Korespondenc¢ni Seminar z Programovani

| 38. roénik

KSP

Prosinec 2025 |

Vzorova reseni druhé série tficatého osmého roc¢niku KSP

38-2-1 VsSechny cesty vedou pies Rim

Prvni si oznaéme Kolin jako vrchol u a Brno jako vrchol
v. Ted pojdme pfemyslet v feéi grafti. Vrchol na vSech uv-
cestach (vSech cestéch z u do v) si ozna¢me dominujici. Cil
ulohy je pro kazdy vrchol zjistit, zda je dominujici.

Ve zbytku feSeni zafixujeme néjakou libovolnou uw-cestu,
ozna¢me ji P. Vrcholy © ¢ P z definice nejsou dominujici
(jelikoz nelezi na vSech uv-cestach) a vrchol x € P neni
dominujici, pravé kdyz jde najit ndjakd cesta P’ takovd, ze
x ¢ P’. Intuitivné se pro kazdé = € P snazime zjistit, zda
jde “obejit”.

Jak muze takovda P’ vypadat? Cest s x ¢ P’ mlze byt
opravdu hodné, ale d4 se rozmyslet, ze pokud = neni do-
minujici, tak vZdycky bude existovat cesta P’, kterd zacina
stejné jako P, pak jde néjakou dobu vyhradné po hranach
a vrcholech mimo P a pak kondi stejné jako P.

Ozna¢me vrcholy na cesté P poporadé jako wi, wa, . .., wy.
Predchozi pozorovani se da zformalizovat do nasledujiciho
tvrzeni: vrchol w; € P neni dominujici, pravé kdyz existuji
vrcholy w; a wg pro i < j < k takové, Ze mezi w; a wy se
da dojit po vrcholech mimo P. Jeho pravdivost nahlédneme
snadno: pokud takové dva vrcholy existuji, pak vrchol w;
mizeme obejit. Naopak pokud w; mtzeme obejit, tj. pokud
existuje P’ # w;, tak se v P’ d4 najit vhodné w; a wy.
Stac¢i nam tedy pro kazdy vrchol w; spocitat, do jakého
nejpravéjsiho vrcholu wy € P z néj umime najit obchtzku.
Oznac¢me index takového vrcholu jako k;.

Spocitat k; mizeme napiiklad prohleddvanim do hloubky
upravenym tak, ze si zakdzeme pouzivat vrcholy v P. Pru-
bézné si udrzujeme nejpravéjsi vrchol P, ktery jsme dosud
vidéli, a na konci jeho index ulozime jako k;.

Naivni FeSeni spo¢itd k; pro vSechna w; v ¢ase O(|P|(M +
N)) € O(N(M + N)). Ted mame |P| intervalovych tvrze-
ni tvaru “vrcholy mezi 7 a k; nejsou dominujici”. Naivné
pak mizeme v dase O(|P|?) C O(N?) pro kazdy vrchol
rozhodnout, zda je dominujici. Celkova ¢asova slozitost je
O(N(M + N)).

Jak tento algoritmus zrychlit? Dulezité je nasledujici pozo-
rovani: viibec nemusime pocitat k;, staci ndm jen vzdycky
urcit, jestli se z w; umime dostat dal nez ze vSech pfed-
chozich w; pro j < ¢, a pfipadné¢ kam. Pokud ne, tak
ndm vrchol w; nedévd Zaddnou novou informaci (obchiizka
z néj je ostfe horsi nez néjaka jind). Specidlné pti DFS z w;
staci navstévovat jen vrcholy, které jsme jesté nenavstivili
v predchozich volanich: u téch navstivenych uz totiz vime,
7Ze ndm nepomohou objevit z w; lepsi obchliizku. Mtzeme
tedy vSechna DF'S pustit s jednou globalni znackou “navsti-
veno” pro kazdy vrchol, kterou mezi volanimi neresetujeme.
Tak za cely béh algoritmu navstivime kazdy vrchol a hranu
nejvyse jednou a celkova ¢asova slozitost prohledavani bude
jen O(N + M).

S takto upravenym algoritmem umime snadno zjistit, které
vrcholy jsou dominujici. Udrzujeme si m, index nejvzdale-

néjsiho vrcholu na P, do kterého se umime dostat z néja-
kého j < i. Pokud pii pfichodu do vrcholu w; plati m < 1,
pak je vrchol w; dominujici, jinak neni.

Celkem nam algoritmus zabere ¢asu v O(N+M) pro naleze-

ni P a dalsich O(N + M) pro nalezeni obejitelnych vrcholt
na P.

Ulohu pripravili: Risa Hladik, Katia ,,Cic¢i“ Kocickd,
Kristyna Petrlikovd, Matus Pull

38-2-2 Stop STOPkam
Zhrnutie

Uloha od nés chce aby sme nasli taka cestu z vrcholu 1 do
vrcholu NV, ktora prioritne minimalizuje pocet zastaveni na
STOPkach a sekundarne dlzku cesty. Je zname, ze ak by
sme chceli iba minimalizovat dizku cesty, tak by sme mohli
pouzit napriklad Dijkstrov algoritmus. V tejto tlohe vSak
mame dve kritéria, ktoré chceme minimalizovat, avsak uka-
zeme si ze po malej modifikacii to Dijkstrovym algritmom
stale pojde.

Dijkstrov algoritmus

Dijkstrov algoritmus funguje tak, Ze postupne hlad4 naj-
kratsie cesty do vsetkych vrcholov zo zaciato¢ného vrcholu.
Zacne v zafiato¢nom vrchole, do ktorého sa vieme dostat
prejdenim nulovej vzdialenosti. Nasledne pre kazdého jeho
suseda vieme Ze sa do neho vieme dostat prejdenim vzdiale-
nosti rovnajucej sa vzdialenosti do aktualneho vrcholu plus
dlzke hrany medzi nimi. V dalsom kroku vyberieme vrchol
s najmensou vzdialenostou, ktort sme zatial nasli, a eSte
sme z neho neprechadzali jeho susedov, a opakujeme pro-
ces, teda zistujeme najkratsie cesty do jeho susedov. Detaily
o Dijkstrovom algoritme méZete najst na Wiki stranke.!

Modifikacia Dijkstrovho algoritmu

Pouzitie dvoch kritérii ndm tilohu mierne komplikuje, avsak
vieme si v8imnat, Ze algoritmus vie fungovat aj s viacerimi
kritériami. Staci, aby sme namiesto ukladania jednej hod-
noty vzdialenosti ukladali dvojicu hodnét, pocet zastaveni
a vzdialenost. Porovnanie bude fungovat lexikograficky, te-
da najprv porovname pocet zastaveni a ak st rovnaké, tak
porovname vzdialenost. Vidime Ze takéto porovnanie vzdy
prioritne minimalizuje pocet zastaveni a sekundéarne dlzku
cesty, Co je presne to, ¢o chceme. Teda po tejto modifikacii
vieme spustif Standardny Dijkstrov algoritmus.

Ako riesit hlavné a vedlajsie cesty?

Implementacény trik na ¢i je cesta je hlavna alebo vedlajsia
je, ze si v kazdom vrchole zoradime hrany podla priority,
a nasledne sa vzdy iba pozrieme ¢i je hrana po ktorej sme
prisli medzi dvoma hranami s najvyssou prioritou.

Ak nie je, tak sme prisli po vedlajSej ceste a musime pri-
pocitat jedno zastavenie, pretoZe budeme musiet ¢akat na
STOPke. Je si avSak treba dat pozor na $pecidlny pripad,
ked prideme do koncového vrcholu IV, tam totiz cakaf ne-
musime, takze vtedy zastavenie nepripocitavame.

I https://cs.wikipedia.org/wiki/Dijkstr’C5%AFv_algoritmug

1=

https://cs.wikipedia.org/wiki/Dijkstr%C5%AFv_algoritmus

Ako rekonstruovat cestu?

Cestu vieme rekonstruovat Standardnym spésobom, teda si
pri kazdom vrchole pamétame takzvany back-pointer, teda
z ktorého vrcholu sme do neho prisli po najkrasej ceste.
Po skondeni algoritmu vieme zacat v koncovom vrchole N
a postupne chodif po back-pointeroch az kym nedojdeme
do vrcholu 1. Tymto sposobom ziskame cestu v opa¢nom
poradi, takZe ju este treba otodit.

Zlozitost

Dijkstrov algoritmus s pouzitim prioritnej fronty bezi v case
O((M+N)log N), kde N je pocet vrcholov a M pocet hran.
Pamitova zlozitost je O(N + M) na uloZenie grafu a dalsich
O(N) na ukladanie vzdialenosti a back-pointerov.

Program (C++):
http://ksp.mff.cuni.cz/viz/38-2-2.cpp

Ulohu pripravili: Patrik Pritrsky, Dan Skiypala

38-2-3 Opisovani

Pojdme si nejdiiv rozmyslet, s ¢im to vlastné pracujeme:
Dostali jsme tabulku N x M, tedy vime pro kazdého stu-

je, ze vime pro kazdou tlohu, ktery student ji umi — a tedy
pro kazdou tlohu, kolik studentt ji umi.

Pro kazdou tulohu si tedy spocitame, kolik studenti ji umi.
Ted vezméme tu, kterou umi co nejméné studenttt — neboli
kterou neumi co nejvice studentid. Kdyz pred neznalymi
studenty nebude zadny znaly, tak vSechny neznalé s jistotou
vyhodime!

Jde to ale 1épe? Muzeme ted zase t¥idit sekundarné pod-
le druhé nejméné znamé otazky, a tak déle? Myslenka je
to lakavé, ale ukazeme si, Ze ne: necht K je pocet studen-
studenty jakkoliv, (K + 1)-ty z nich (a tedy i kazdy dalsi)
spravné odpovi na vSechny otazky. To proto, ze pro kazdou
otazku existuje nanejvys K studenti, ktefi ji neuméji, tudiz
mezi K + 1 prvnimi studenty bude aspon jeden, ktery tuto
otazku umi. (K +1)-ty student tedy diky opisovani sprévné
odpovi vSechny otazky.

Nasge feseni jednou projde celou tabulku N x M, pro kaz-
dou otazku zjisti pocet znalych studenttt a nakonec vSech-
ny znalé studenty nasazi nakonec a neznalé doptedu, coz
zvlddneme v ¢ase ©(N). Celkova casova slozitost bude te-
dy v O(NM).

Ulohu pripravili: Matds Pill, Ben Swart

38-2-4 Zakerna parkovaci mista

S dovolenim budeme referovat pouze k hodnotdm parkova-

cich mist a jejich umisténi v fadé. To, Ze jsou to parkovaci
mista a ze na nich stoji auta, ackoliv nas naplinuje nepoko-
jem, protoze jisté alespon polovina ze zacastnénych mohla
pfijet méstskou hromadnou dopravou a usetfit tim jak pe-
nize, tak zivotni prostiedi, neni algoritmicky zajimavé.

Co vlastné mizeme usoudit, kdyz se podiviame na hodnotu
na jednom misté? A ono vlastné vitbec nic — samotna hod-
nota jednoho mista ndm nic nefekne. Kdyz se ale podivame
i na jeho sousedy, hned z toho mtizeme néco zjistit. Mohou
nastat tfi situace:

e Oba sousedi maji niz$i/stejnou hodnotu — nasli jsme hle-
dané misto.

e Jeden soused mé nizsi/stejnou hodnotu a jeden vyssi —
co v tu chvili mizeme usoudit o sméru, ve kterém je ten
vyssi? Jelikoz hodnoty nemutzou rist porad, pac by jis-
té narazily na okraji, tak se nékde timto smérem urcité
nachazi néjaké vyhovujici misto. Tedy se mtizeme koukat
jenom na mista timto smérem s jistotou, ze tam néjaké
vyhovujici misto je.

® Oba sousedi maji vyssi hodnotu — miZeme si vybrat, kte-
rym smérem se vydame a aplikujeme predchozi tvrzeni.

No a nakonec uz si akorat vSimneme, ze takhle se mizeme
podivat do poloviny prohledavaného tiseku a tim polovinu
jisté zahodit. Tedy v kazdém kroku snizime pocet prohle-
dévanych pozic na zhruba polovinu. Tedy celkem uvidime

3 -log, N porzic, coz je v O(log N).

Poznamka na zavér: pokud bychom chtéli zlepsovat kon-
@ stantu pred logy IV, existuje na to chytry algoritmus
jménem metoda zlatého fezu. Ta pouziva podobnou mys-
lenku, ze ze tfi hodnot jsme schopni vyloucit ¢ast parko-
visté, ale misto t¥i sousednich parkovacich mist voli mista
trochu slozitéji, ¢imz na kazdé trovni rekurze musime vy-
hodnotit jen jednu novou pozici. Nevyhodou je, Ze rekurze
je trochu hlubsi, jelikoz pole neptilime pfesné v ptilce. Pres-
to pocet dotazi diky tomu klesne, a to konkrétné na zhruba
1,441log, N. Pokud jste zvédavi, muizete si pfecist vic na an-
glické Wikipedii.?

Ulohu pripravili: Daniel Culliver,
Kristyna Petrlikovd, Matus Pull

38-2-S Hleda se pivot

Reseni seridlu najdete na nasem webu:

http://ksp.mff.cuni.cz/viz/38-2/resenil

Ulohu pripravili: Martin ,Med-
véd“ Mares, Dan Skypala

2 https://en.wikipedia.org/wiki/Golden-section_search

—9_

http://ksp.mff.cuni.cz/viz/38-2-2.cpp
http://ksp.mff.cuni.cz/viz/38-2/reseni
https://en.wikipedia.org/wiki/Golden-section_search

KSP pro vas pripravuji studenti Matematicko-fyzikalni fakulty Univerzity Karlovy.
Realizace projektu byla podpofena Ministerstvem skolstvi, mladeze a télovychovy.

.‘ ma tf\[Z Webové stranky: E-mail: Organizatori a kontakty:
lhttps: //ksp. mff.cuni.cz/| https: //ksp.mff.cuni.cz/kontakty /|

-3 -

https://ksp.mff.cuni.cz/
mailto:ksp@mff.cuni.cz
https://ksp.mff.cuni.cz/kontakty/

	Vzorová řešení 2. série 38. ročníku KSP
	38-2-1: Všechny cesty vedou přes Řím
	38-2-2: Stop STOPkám
	38-2-3: Opisování
	38-2-4: Zákeřná parkovací místa
	38-2-S: Hledá se pivot

