
Korespondenční Seminář z Programování
38. ročník KSP Prosinec 2025

Vzorová řešení druhé série třicátého osmého ročníku KSP

38-2-1 Všechny cesty vedou přes Řím

První si označme Kolín jako vrchol u a Brno jako vrchol
v. Teď pojďme přemýšlet v řeči grafů. Vrchol na všech uv-
cestách (všech cestách z u do v) si označme dominující. Cíl
úlohy je pro každý vrchol zjistit, zda je dominující.

Ve zbytku řešení zafixujeme nějakou libovolnou uv-cestu,
označme ji P . Vrcholy x /∈ P z definice nejsou dominující
(jelikož neleží na všech uv-cestách) a vrchol x ∈ P není
dominující, právě když jde najít nějaká cesta P ′ taková, že
x /∈ P ′. Intuitivně se pro každé x ∈ P snažíme zjistit, zda
jde “obejít”.

Jak může taková P ′ vypadat? Cest s x /∈ P ′ může být
opravdu hodně, ale dá se rozmyslet, že pokud x není do-
minující, tak vždycky bude existovat cesta P ′, která začíná
stejně jako P , pak jde nějakou dobu výhradně po hranách
a vrcholech mimo P a pak končí stejně jako P .

Označme vrcholy na cestě P popořadě jako w1, w2, . . . , wℓ.
Předchozí pozorování se dá zformalizovat do následujícího
tvrzení: vrchol wj ∈ P není dominující, právě když existují
vrcholy wi a wk pro i < j < k takové, že mezi wi a wk se
dá dojít po vrcholech mimo P . Jeho pravdivost nahlédneme
snadno: pokud takové dva vrcholy existují, pak vrchol wj

můžeme obejít. Naopak pokud wj můžeme obejít, tj. pokud
existuje P ′ ̸∋ wj , tak se v P ′ dá najít vhodné wi a wk.

Stačí nám tedy pro každý vrchol wi spočítat, do jakého
nejpravějšího vrcholu wk ∈ P z něj umíme najít obchůzku.
Označme index takového vrcholu jako ki.

Spočítat ki můžeme například prohledáváním do hloubky
upraveným tak, že si zakážeme používat vrcholy v P . Prů-
běžně si udržujeme nejpravější vrchol P , který jsme dosud
viděli, a na konci jeho index uložíme jako ki.

Naivní řešení spočítá ki pro všechna wi v čase O(|P |(M +
N)) ⊂ O(N(M +N)). Teď máme |P | intervalových tvrze-
ní tvaru “vrcholy mezi i a ki nejsou dominující”. Naivně
pak můžeme v čase O(|P |2) ⊂ O(N2) pro každý vrchol
rozhodnout, zda je dominující. Celková časová složitost je
O(N(M +N)).

Jak tento algoritmus zrychlit? Důležité je následující pozo-
rování: vůbec nemusíme počítat ki, stačí nám jen vždycky
určit, jestli se z wi umíme dostat dál než ze všech před-
chozích wj pro j < i, a případně kam. Pokud ne, tak
nám vrchol wi nedává žádnou novou informaci (obchůzka
z něj je ostře horší než nějaká jiná). Speciálně při DFS z wi

stačí navštěvovat jen vrcholy, které jsme ještě nenavštívili
v předchozích voláních: u těch navštívených už totiž víme,
že nám nepomohou objevit z wi lepší obchůzku. Můžeme
tedy všechna DFS pustit s jednou globální značkou “navští-
veno” pro každý vrchol, kterou mezi voláními neresetujeme.
Tak za celý běh algoritmu navštívíme každý vrchol a hranu
nejvýše jednou a celková časová složitost prohledávání bude
jen O(N +M).

S takto upraveným algoritmem umíme snadno zjistit, které
vrcholy jsou dominující. Udržujeme si m, index nejvzdále-

nějšího vrcholu na P , do kterého se umíme dostat z něja-
kého j < i. Pokud při příchodu do vrcholu wi platí m ≤ i,
pak je vrchol wi dominující, jinak není.

Celkem nám algoritmus zabere času vO(N+M) pro naleze-
ní P a dalších O(N +M) pro nalezení obejitelných vrcholů
na P .

Úlohu připravili: Ríša Hladík, Katia „Čiči“ Kočická,
Kristýna Petrlíková, Matúš Púll

38-2-2 Stop STOPkám

Zhrnutie

Úloha od nás chce aby sme našli takú cestu z vrcholu 1 do
vrcholu N , ktorá prioritne minimalizuje počet zastavení na
STOPkách a sekundárne dĺžku cesty. Je známe, že ak by
sme chceli iba minimalizovať dĺžku cesty, tak by sme mohli
použiť napríklad Dijkstrov algoritmus. V tejto úlohe však
máme dve kritériá, ktoré chceme minimalizovať, avšak uká-
žeme si že po malej modifikácii to Dijkstrovým algritmom
stále pôjde.

Dijkstrov algoritmus

Dijkstrov algoritmus funguje tak, že postupne hľadá naj-
kratšie cesty do všetkých vrcholov zo začiatočného vrcholu.
Začne v začiatočnom vrchole, do ktorého sa vieme dostať
prejdením nulovej vzdialenosti. Následne pre každého jeho
suseda vieme že sa do neho vieme dostať prejdením vzdiale-
nosti rovnajúcej sa vzdialenosti do aktuálneho vrcholu plus
dĺžke hrany medzi nimi. V ďaľšom kroku vyberieme vrchol
s najmenšou vzdialenosťou, ktorú sme zatiaľ našli, a ešte
sme z neho neprechádzali jeho susedov, a opakujeme pro-
ces, teda zisťujeme najkratšie cesty do jeho susedov. Detaily
o Dijkstrovom algoritme môžete nájsť na Wiki stránke.1

Modifikácia Dijkstrovho algoritmu

Použitie dvoch kritérií nám úlohu mierne komplikuje, avšak
vieme si všimnúť, že algoritmus vie fungovať aj s viacerími
kritériami. Stačí, aby sme namiesto ukladania jednej hod-
noty vzdialenosti ukladali dvojicu hodnôt, počet zastavení
a vzdialenosť. Porovnanie bude fungovať lexikograficky, te-
da najprv porovnáme počet zastavení a ak sú rovnaké, tak
porovnáme vzdialenosť. Vidíme že takéto porovnanie vždy
prioritne minimalizuje počet zastavení a sekundárne dĺžku
cesty, čo je presne to, čo chceme. Teda po tejto modifikácií
vieme spustiť štandardný Dijkstrov algoritmus.

Ako riešiť hlavné a vedľajšie cesty?

Implementačný trik na či je cesta je hlavná alebo vedľajšia
je, že si v každom vrchole zoradíme hrany podľa priority,
a následne sa vždy iba pozrieme či je hrana po ktorej sme
prišli medzi dvoma hranami s najvyššou prioritou.

Ak nie je, tak sme prišli po vedľajšej ceste a musíme pri-
počítať jedno zastavenie, pretože budeme musieť čakať na
STOPke. Je si avšak treba dať pozor na špeciálny prípad,
keď prídeme do koncového vrcholu N , tam totiž čakať ne-
musíme, takže vtedy zastavenie nepripočítavame.

1 https://cs.wikipedia.org/wiki/Dijkstr%C5%AFv_algoritmus

– 1 –

https://cs.wikipedia.org/wiki/Dijkstr%C5%AFv_algoritmus

Ako rekonštruovať cestu?

Cestu vieme rekonštruovať štandardným spôsobom, teda si
pri každom vrchole pamätáme takzvaný back-pointer, teda
z ktorého vrcholu sme do neho prišli po najkrašej ceste.
Po skončení algoritmu vieme začať v koncovom vrchole N
a postupne chodiť po back-pointeroch až kým nedôjdeme
do vrcholu 1. Týmto spôsobom získame cestu v opačnom
poradí, takže ju ešte treba otočiť.

Zložitost

Dijkstrov algoritmus s použitím prioritnej fronty beží v čase
O((M+N) logN), kdeN je počet vrcholov aM počet hrán.
Pamäťová zložitosť je O(N+M) na uloženie grafu a ďalších
O(N) na ukladanie vzdialeností a back-pointerov.
Program (C++):
http://ksp.mff.cuni.cz/viz/38-2-2.cpp

Úlohu připravili: Patrik Prítrský, Dan Skýpala

38-2-3 Opisování

Pojďme si nejdřív rozmyslet, s čím to vlastně pracujeme:
Dostali jsme tabulku N ×M , tedy víme pro každého stu-
denta, kterou úlohu umí. Co ale pro nás bude důležitější,
je, že víme pro každou úlohu, který student ji umí – a tedy
pro každou úlohu, kolik studentů ji umí.

Pro každou úlohu si tedy spočítáme, kolik studentů ji umí.
Teď vezměme tu, kterou umí co nejméně studentů – neboli
kterou neumí co nejvíce studentů. Když před neznalými
studenty nebude žádný znalý, tak všechny neznalé s jistotou
vyhodíme!

Jde to ale lépe? Můžeme teď zase třídit sekundárně pod-
le druhé nejméně známé otázky, a tak dále? Myšlenka je
to lákavá, ale ukážeme si, že ne: nechť K je počet studen-
tů, kteří neumí nejtěžší otázku. Platí, že ať uspořádáme
studenty jakkoliv, (K + 1)-tý z nich (a tedy i každý další)
správně odpoví na všechny otázky. To proto, že pro každou
otázku existuje nanejvýšK studentů, kteří ji neumějí, tudíž
mezi K +1 prvními studenty bude aspoň jeden, který tuto
otázku umí. (K+1)-tý student tedy díky opisování správně
odpoví všechny otázky.

Naše řešení jednou projde celou tabulku N ×M , pro kaž-
dou otázku zjistí počet znalých studentů a nakonec všech-
ny znalé studenty nasází nakonec a neznalé dopředu, což
zvládneme v čase Θ(N). Celková časová složitost bude te-
dy v Θ(NM).

Úlohu připravili: Matúš Púll, Ben Swart

38-2-4 Zákeřná parkovací místa

S dovolením budeme referovat pouze k hodnotám parkova-

cích míst a jejích umístění v řadě. To, že jsou to parkovací
místa a že na nich stojí auta, ačkoliv nás naplňuje nepoko-
jem, protože jistě alespoň polovina ze zúčastněných mohla
přijet městskou hromadnou dopravou a ušetřit tím jak pe-
níze, tak životní prostředí, není algoritmicky zajímavé.

Co vlastně můžeme usoudit, když se podíváme na hodnotu
na jednom místě? A ono vlastně vůbec nic – samotná hod-
nota jednoho místa nám nic neřekne. Když se ale podíváme
i na jeho sousedy, hned z toho můžeme něco zjistit. Mohou
nastat tři situace:

• Oba sousedi mají nižší/stejnou hodnotu – našli jsme hle-
dané místo.

• Jeden soused má nižší/stejnou hodnotu a jeden vyšší –
co v tu chvíli můžeme usoudit o směru, ve kterém je ten
vyšší? Jelikož hodnoty nemůžou růst pořád, páč by jis-
tě narazily na okraji, tak se někde tímto směrem určitě
nachází nějaké vyhovující místo. Tedy se můžeme koukat
jenom na místa tímto směrem s jistotou, že tam nějaké
vyhovující místo je.

• Oba sousedi mají vyšší hodnotu – můžeme si vybrat, kte-
rým směrem se vydáme a aplikujeme předchozí tvrzení.

No a nakonec už si akorát všimneme, že takhle se můžeme
podívat do poloviny prohledávaného úseku a tím polovinu
jistě zahodit. Tedy v každém kroku snížíme počet prohle-
dávaných pozic na zhruba polovinu. Tedy celkem uvidíme
3 · log2N pozic, což je v O(logN).

}∑ Poznámka na závěr: pokud bychom chtěli zlepšovat kon-
stantu před log2N , existuje na to chytrý algoritmus

jménem metoda zlatého řezu. Ta používá podobnou myš-
lenku, že ze tří hodnot jsme schopni vyloučit část parko-
viště, ale místo tří sousedních parkovacích míst volí místa
trochu složitěji, čímž na každé úrovni rekurze musíme vy-
hodnotit jen jednu novou pozici. Nevýhodou je, že rekurze
je trochu hlubší, jelikož pole nepůlíme přesně v půlce. Přes-
to počet dotazů díky tomu klesne, a to konkrétně na zhruba
1,44 log2N . Pokud jste zvědaví, můžete si přečíst víc na an-
glické Wikipedii.2

Úlohu připravili: Daniel Culliver,
Kristýna Petrlíková, Matúš Púll

38-2-S Hledá se pivot

Řešení seriálu najdete na našem webu:

http://ksp.mff.cuni.cz/viz/38-2/reseni

Úlohu připravili: Martin „Med-
věd“ Mareš, Dan Skýpala

2 https://en.wikipedia.org/wiki/Golden-section_search

– 2 –

http://ksp.mff.cuni.cz/viz/38-2-2.cpp
http://ksp.mff.cuni.cz/viz/38-2/reseni
https://en.wikipedia.org/wiki/Golden-section_search

KSP pro vás připravují studenti Matematicko-fyzikální fakulty Univerzity Karlovy.
Realizace projektu byla podpořena Ministerstvem školství, mládeže a tělovýchovy.

Webové stránky:
https://ksp.mff.cuni.cz/

E-mail:
ksp@mff.cuni.cz

Organizátoři a kontakty:
https://ksp.mff.cuni.cz/kontakty/

– 3 –

https://ksp.mff.cuni.cz/
mailto:ksp@mff.cuni.cz
https://ksp.mff.cuni.cz/kontakty/

	Vzorová řešení 2. série 38. ročníku KSP
	38-2-1: Všechny cesty vedou přes Řím
	38-2-2: Stop STOPkám
	38-2-3: Opisování
	38-2-4: Zákeřná parkovací místa
	38-2-S: Hledá se pivot

