
Korespondenční Seminář z Programování
38. ročník KSP Leden 2026

Milí řešitelé, řešitelky a řešitelčata!
Dostává se k vám první číslo hlavní kategorie 38. ročníku KSP.

Letos se můžete těšit v každé z pěti sérií hlavní kategorie na 4 normální úlohy, z toho alespoň
jednu praktickou opendatovou. Dále na kuchařky obsahující nějaká zajímavá informatická
témata, hodící se k úlohám dané série. Občas se nám také objeví bonusová X-ková úloha,
za kterou lze získat X-kové body. Kromě toho bude součástí sérií seriál, jehož díly mohou
vycházet samostatně.

Autorská řešení úloh budeme vystavovat hned po skončení série. Pokud nás pak při opravo-
vání napadnou nějaké komentáře k řešením od vás, zveřejníme je dodatečně.

Odměny & na Matfyz bez přijímaček

Za úspěšné řešení KSP můžete být přijati na MFF UK bez přijímacích zkoušek. Úspěšným
řešitelem se stává ten, kdo získá za celý ročník (hlavní kategorie) alespoň 50% bodů. Za
letošní rok půjde získat maximálně 300 bodů, takže hranice pro úspěšné řešitele je 150.
Maturanti pozor, pokud chcete prominutí využít letos, musíte to stihnout do konce čtvrté
série, pátá už bude moc pozdě. Také každému řešiteli, který v tomto ročníku z každé série
dostane alespoň 5 bodů, darujeme KSP propisku, blok, nálepku na notebook a možná i další
překvapení.

Termín série: 15. února 2026 ve 32:00 (tedy další ráno v 8:00)

Odevzdávání: Přes web na adrese https://ksp.mff.cuni.cz/h/odevzdavatko/

Značky úloh: � Lehčí úloha (či její část) vhodná pro začátečníky 	 Praktická open-data úloha

� Úloha, u které doporučujeme začíst se do kuchařky � Seriálová úloha

 Experimentální (neobvyklá) úloha

Odměna série: Odznáček do profilu na webu si vyslouží ten, kdo odevzdá řešení aspoň jedné teoretické úlohy
v angličtině.

Třetí série třicátého osmého ročníku KSP

38-3-1 Zahrada s bonsajemi 10 bodů

	
Kevin si kdysi dávno umínil, že se stane zahradníkem –
a ne jen tak ledajakým! Rozhodl se pěstovat kromě

bramborového salátu i svou sebedisciplínu, a do malé mis-
tičky si zasadil bonsaj – zakořeněný strom s hranami ohod-
nocenými délkami, který je třeba pravidelně zastřihovat.

Jenže pak přišel zimní semestr, spousta úkolů a učení se, a
bonsaj, jsouc obyčejným stromem, který sebedisciplínu pa-
trně nepěstuje, Kevinovi jaksi přerostla přes hlavu – a to
doslova. Kevin, jakožto hippoantropomorfní personifikace
ducha semináře, může v závislosti od potřeb konkrétního
zapohádkování dosahovat vzpřímen i tři metry – takže si
umíte představit, jak špatné světlo (doslova stín) tohle na
něj vrhá. A kolik práce dá pečlivé stříhaní takového stro-
miska. . . Ale snad nenechá kus nějaké bonsaje, ať mu saje
krev! Musí s tím okamžitě něco udělat.

Kevinovi je jasné, že aby byla bonsaj správně zenová, ne-
smí mít víc než Z milimetrů v průměru (to je součet hran
na nejdelší cestě, žádná statistická veličina). Bylo by mu
ale líto většinu stromu prostě vyhodit – namísto toho se
pokusí strom nařezat na několik zenových bonsajíček (te-
dy, pardón, bonsají). Řezání funguje tak, že se ze stromu
odstraní hrana mezi rodičem a potomkem, a potomek se
stane kořenem nového stromu, zatímco rodič zůstane vr-
cholem původního.

Kevin ale odmítá hraním si s hranami a motorovou pilou
strávit celý den, takže trvá na tom, že počet nařezání (tedy
počet nových stromků) bude nejmenší možný. Pomozte mu
zjistit, na jakých místech má svůj strom nařezat.

Na vstupu dostanete dvě číslaN a Z – počet vrcholů stromu
a maximální možný průměr bonsaje, která je zenová. Násle-
duje N − 1 řádků obsahujících čísla pi a li, pro 2 ≤ i ≤ N .
pi značí číslo vrcholu, který je rodičem vrcholu i, a li je
délka hrany mezi těmito dvěma vrcholy. Vrcholy číslujeme
od 1, vrchol s indexem 1 je vždy kořen stromu.

Jako odpověď uveďte jeden řádek obsahující mezerami od-
dělená čísla nových kořenů po správném nařezání stromu.
Pokud je více optimálních možností, uveďte libovolnou.

38-3-2 Stavba sjezdovky 10 bodů

	
Obyvatelé Hrochova Týnce se rozhodli na místním sva-
hu postavit sjezdovku. Nechtějí lyžařům kazit výhled

na krajinu zátarasy, takže ze začátku sjezdovky mohou ly-
žaři jet dolů a šikmo do stran. Sjezdovka dole končí vodo-
rovným plotem, takže má tvar trojúhelníku. Na svahu se
vyskytují velké kameny a stromy, přes které se moc lyžo-
vat nedá, což omezuje možná umístění. Pomozte jim najít
největší volné místo pro sjezdovku.

– 1 –

https://ksp.mff.cuni.cz/h/odevzdavatko/

Najděte největší rovnostranný podtrojúhelník bez překážek
na jejich trojúhelníkovém svahu. Pokud je jich víc, stačí
libovolný.

Toto je praktická open-data úloha. V odevzdávacím sys-
tému si necháte vygenerovat vstupy a odevzdáte příslušné
výstupy. Záleží jen na vás, jak výstupy vyrobíte.

Formát vstupu: Na prvním řádku je číslo N – délka svahu.
Následuje několik řádků popisujících překážky na svahu. Na
každém řádku s překážkou jsou dvě čísla, která určují její
souřadnice. Souřadnice jsou tvořeny vzdáleností od vrchu a
vzdáleností od levého kraje. Na všech ostatních souřadni-
cích je volno.

Všechny souřadnice jsou číslované od jedné, nejvyšší pozice
sjezdovky je tedy 1, 1.

Formát výstupu: Na výstup vypište tři čísla – délku sjez-
dovky a souřadnice jejího začátku.

Ukázkový vstup:

6
1 1
3 3
4 1
5 5
6 2
6 3

Ukázkový výstup:

3 3 2

. .
. .
. . .

. . . .
. . . .

38-3-3 Těžká úloha 11 bodů

Protože ještě není sjezdovka v Hrochově Týnci hotová, roz-
hodl se Kevin vyrazit za lyžováním do Alp. Nemá však příliš
v lásce dlouhé cesty autem a byl by proto rád, kdyby jeho
cesta do Alp trvala co nejkratší dobu.

Bohužel pro něj jsou některé dálnice zpoplatněné vysokým
mýtem, a on tak při plánování trasy musí brát ohled nejen
na její délku, ale i na svůj malý rozpočet na dopravu, který
činí celkem K korun.

Dálniční síť si můžete představit jako orientovaný graf o N
vrcholech aM hranách. Hrany tohoto grafu odpovídají dál-
nicím a každá z nich má zadanou délku a cenu v korunách,
kterou je třeba zaplatit, pokud při cestě Kevin dotyčnou
hranu použije. Ceny i délky hran jsou vždy nezáporná ce-
lá čísla. Vrcholy odpovídají městům, která dálnice spojují.
Máme zadaný vrchol u, ze kterého Kevin vyráží, a vrchol
v, který odpovídá cíli Kevinovy cesty.

Kevin by si přál nalézt nějaký efektivní algoritmus, který
by splňoval následující tři vlastnosti:

• Algoritmus nejprve na svém vstupu přijme K, u, v a
orientovaný graf s cenami a délkami hran.

• Rozhodne, zda existuje cesta z vrcholu u do vrcholu v
taková, že je součet cen hran na této cestě nejvýše K.
Pokud ano, nalezne nejkratší takovou cestu.

• Běží v polynomiálním čase. Časová složitost algoritmu by
tedy měla být O(Lc), kde L je délka vstupu a c nějaká
konstanta.

Zatím si Kevin nad tímto problémem jen marně lámal hla-
vu. Hodila by se mu proto vaše pomoc. Vaším úkolem však
tentokrát nebude problém vyřešit, ale dokázat, že je tato
úloha mnohem těžší, než si Kevin myslí.

Před přečtením následující části zadání doporučujeme na-
studovat si naši kuchařku o těžkých problémech.1

Budete mít za úkol dokázat, že je Kevinův problém takzva-
ně NP-těžký. To znamená, že lze každý problém z třídy NP
převést v polynomiálním čase na tento problém. Od pojmu
NP-úplný se liší tím, že samotný problém ve třídě NP ležet
nemusí.

Ve vašem řešení se můžete odkazovat na tvrzení z naší ku-
chařky a smíte ve svém řešení využít libovolný NP-úplný
problém, který je v ní uvedený. Pokud použijete nějaké ne-
triviální tvrzení, které v ní není uvedené, měli byste jej ve
svém řešení dokázat.

38-3-4 Medvědi 14 bodů

Matúš dnes nemá příliš dobrý den. Nejprve si zapomněl na
ubytování telefon a nyní omylem zavedl U účastníků pod-
zimního soustředění do lesa plného M hladových medvědů!
Takový les si můžeme představit jako čtvercovou mřížku
o celkem P políčkách, kde každé políčko je buď volné, a po-
tom na něm může stát nejvýše jeden účastník či nejvýše
jeden medvěd, nebo je zabrané stromem.

Matúš je odhodlaný zabránit zbytečnému krveprolití, a pro-
to se rozpomněl na vše, co kdy o medvědech slyšel.

Například z hodin přírodopisu ví, že každý medvěd v příro-
dě chodí výhradně tam a zpět po přesně definované trase.
Jakmile však medvěd jednou spatří kořist, opustí bez za-
váhání svou obvyklou trasu, rozběhne se za kořistí vysokou
rychlostí a zaručeně ji dostihne. Naštěstí pro Matúše tito
medvědi neoplývají příliš bystrým zrakem ani dobrým či-
chem a postřehnou svou oběť jen tehdy, pokud se nachází
na políčku sousedícím stranou s jejich.

Matúš proto doufá, že by mohl dát jednotlivým účastníkům
instrukce, jak se mají v lese pohybovat, aby každý účast-
ník zvládl postupně les buď zcela opustit, nebo se alespoň
zvládl úspěšně vyhýbat medvědům příštích S sekund. Po S
sekundách totiž zapadne slunce a medvědi půjdou dozajista
spát.

Pohyb v lese probíhá v taktech po jednotlivých sekundách.
Každou sekundu se medvědi i účastníci pohnou najednou
podle svých instrukcí a na konci taktu nesmí platit, že by
nějaký účastník přímo sousedil s medvědem.

Pokud se nějaký účastník nachází na konci taktu na kraj-
ním volném políčku a není ohrožen medvědem, může daný
účastník les na začátku příštího taktu bezpečně opustit.

Na vstupu dostanete číslo S značící počet sekund do setmě-
ní, pozice U účastníků, čtvercovou mřížku odpovídající le-
su o celkem P políčkách a M tras medvědů. Každá trasa
je charakterizována seznamem políček, po kterých odpo-
vídající medvěd chodí tam a zpět. První políčko seznamu
odpovídá medvědově výchozí pozici. Políčka se v seznamu
neopakují a navazují na sebe, takže se z každého políčka na
následující dá dostat pohybem doleva, doprava, nahoru či
dolů.

Váš algoritmus by měl umět rozhodnout, zda je možné za-
chránit všechny účastníky (aniž by přitom v jakémkoliv
okamžiku stáli dva účastníci na stejném políčku), a pokud

1 http://ksp.mff.cuni.cz/viz/kucharky/tezke-problemy

– 2 –

http://ksp.mff.cuni.cz/viz/kucharky/tezke-problemy

ano, vypsat za každého účastníka seznam instrukcí, kde i-tá
instrukce seznamu říká, zda se má účastník v čase i pohnout
nahoru, dolů, doprava, doleva, nebo zůstat stát na místě.

Upozorňujeme, že účastníků i medvědů může být téměř to-
lik jako políček, takže by výsledné řešení mělo záviset jen
na S a P .

Pokud si nejste jistí, jak tuto úlohu řešit, doporučujeme
vám si nejprve přečíst naši kuchařku na toky v sítích.2 Tře-
ba pomůže si postavit nějakou vhodnou síť.

38-3-S Kouzlo hešování 15 bodů

�
V tomto dílu seriálu prozkoumáme hešovací tabulky –
kouzelné datové struktury pro množiny a slovníky, kte-

ré mohou dosáhnout až konstantní časové složitosti operací.

Přečtěte si prosím v Průvodci labyrintem algoritmů kapito-
lu 11.3. Tam se dozvíte, jak funguje hešování s přihrádkami.
Stručně takto:

• Máme nějaké univerzum U možných prvků (třeba všech-
na celá čísla) a přihrádky očíslované 0 až m − 1 pro ně-
jaké m. Každá přihrádka obsahuje seznam svých prvků.

• Pořídíme si hešovací funkci h, která každému prvku x ∈
U přiřadí nějakou přihrádku h(x).

• Datová struktura si pamatuje nějakou n-prvkovou pod-
množinu univerza X ⊆ U . Prvek x ∈ X uložíme do při-
hrádky h(x).

• Kdykoliv hledáme prvek y ∈ U , díváme se jenom do při-
hrádky h(y) (jinde prvek být nemůže).

• Pokud se h chová „dostatečně náhodně“, nachází se v kaž-
dé přihrádce zhruba n/m prvků, řekněme nejvýše cn/m
pro nějakou konstantu c > 0. Pokud tedy nastavíme
m ≥ cn, bude v každé přihrádce nejvýše 1 prvek.

• Hledání, vkládání i mazání tedy budou mít konstantní ča-
sovou složitost, pokud ovšem umíme v konstantním čase
spočítat hešovací funkci a také dva prvky porovnat. To
platí pro čísla, ale už ne pro řetězce – tam bude složitost
záviset na délce řetězce.

• Někdy dopředu nevíme, kolik prvků budeme chtít do ta-
bulky ukládat, abychom podle toho zvolili počet přihrá-
dek. Tehdy nám pomůže postupné zvětšování tabulky
s přehešováváním. Zvětšování je pomalé (vyžaduje pře-
rovnat všech n prvků), ale když ho provádíme jen zříd-
ka, zamortizuje se na konstantní čas na vložený prvek.
Například funguje jednou za čas počet přihrádek zdvoj-
násobit.

• Vedle množin můžeme ukládat i slovníky (jako v Py-
thonu) – ty ke klíčům (to jsou prvky univerza) přiřa-
zují hodnoty (z nějakého jiného univerza). Klíče budou
rozprostřené do přihrádek, u každého klíče bude uložena
příslušná hodnota. Časová složitost zůstává stejná.

Úkol 1 [4b]: Na rozšiřování zdvojnásobováním je nepraktic-
ké, že jednou za čas se tabulka „zamyslí“ a jedna operace
trvá hodně dlouho. Vymyslete, jak rozšiřování zorganizovat
tak, aby operace Find a Insert měly konstantní složitost i
v nejhorším případě (Delete neprovádíme). V tomto úkolu
můžete předpokládat, že hešovací funkce je dost rovnoměr-
ná na to, aby v každé přihrádce bylo nejvýše dn/m prvků
pro nějaké d > 0. Také můžete předpokládat, že alokace a
uvolňování paměti (bez inicializace) trvaji konstantní čas.

Kolize a narozeninový paradox

Situaci, kdy do jedné přihrádky vložíme více prvků, říkáme
kolize. V naší verzi hešovací tabulky nepůsobí kolize zásad-
ní problémy, ale brzdí ji. Proto by se nám nejvíce líbilo
zvolit m ≈ n a hešovací funkci, se kterou žádné dva prvky
nezkolidují. Taková hešovací funkce se nazývá perfektní.

Zatím jsme si představovali, že „dostatečně náhodná“ hešo-
vací funkce do m ≈ n přihrádek bude perfektní. Ukážeme,
že tato představa je bohužel dost naivní.

Uvažujme zcela náhodnou funkci f , která zobrazuje n prvků
do m přihrádek. (Zcela náhodná znamená, že pro každý pr-
vek zvolíme rovnoměrně náhodně jeho přihrádku, nezávisle
na tom, kam umístíme ostatní prvky). Počítejme pravdě-
podobnost, že f je perfektní.

Všech funkcí z n-prvkové množiny dom-prvkové jemn (pro
každý z n prvků nezávisle volíme jednu z m přihrádek).

Všech perfektních (prostých) funkcí mezi týmiž množinami
je m · (m− 1) · (m− 2) · . . . · (m− n+ 1), což značíme jako
mn (n-tá klesající mocnina čísla m). To proto, že pro první
prvek máme na výběr m přihrádek, pro druhý jen m − 1,
pro třetí m− 2 atd.
Pravděpodobnost, že náhodná funkce je perfektní, je tedy
rovna podílu

mn

mn
=

m

m
· m− 1

m
· m− 2

m
· . . . · m− n+ 1

m
=

= 1 ·
(
1− 1

m

)
·
(
1− 2

m

)
· . . . ·

(
1− n− 1

m

)
.

Teď si dovolíme vytáhnout „králíka z klobouku“, totiž ne-
rovnost 1 + x ≤ ex, která podle matematické analýzy platí
pro každé reálné x. Z ní plyne 1− k/m ≤ e−k/m, a proto

mn

mn
≤ 1 · e−1/m · e−2/m · . . . · e−(n−1)/m.

Jelikož ea · eb = ea+b, můžeme pravou stranu upravit na

e−
1+2+...+(n−1)

m .

Teď využijeme toho, že aritmetická řada 1+2+ . . .+(n−1)
má součet n(n − 1)/2 ≤ n2/2. (Nápověda: sečtěte první
prvek s posledním, druhý s předposledním atd.) Docházíme
tedy k nerovnosti

mn

mn
≤ e− n2

2m .

Všimněte si, že položíme-li n = m, bude exponent roven
−n/2, takže hodnota exponenciální funkce bude velmi blíz-
ká nule. Jinými slovy náhodná hešovací funkce n prvků do
n přihrádek skoro jistě není perfektní.

Dodejme ještě, že pro m = cn to dopadne podobně, a až
pro m ≈ n2 bude pravděpodobnost, že náhodná funkce je
prostá, rovna cca 1/2. Tohle je známé pod názvem naro-
zeninový paradox – předpokládáme-li, že každý člověk má
narozeniny v náhodný den v roce, stačí nám 23 lidí na to,
aby s pravděpodobností aspoň 1/2 měli nějací dva naroze-
niny ve stejný den. A kdyby funkce nebyla náhodná, byla
by pravděpodobnost kolize ještě vyšší.

Hledáme škodolibý vstup

Z narozeninového paradoxu víme, že kolize skoro jistě na-
stane. Ale pořád platí, že pokud hešovací funkce přiděluje
přihrádky „dost náhodně“, bude kolizí v průměru málo.

2 http://ksp.mff.cuni.cz/viz/kucharky/toky-v-sitich

– 3 –

https://pruvodce.ucw.cz/
http://ksp.mff.cuni.cz/viz/kucharky/toky-v-sitich

Jenže většina programů používá hešování tak, že zvolí kon-
krétní hešovací funkci, a pak spoléhá na to, že pro běžný
vstup jsou její výsledky dost náhodné.

Ukážeme, že tento přístup se velmi snadno může vymstít,
pokud náš uživatel zná hešovací funkci a škodolibě volí ta-
ková data, aby způsobil co nejvíc kolizí. Uvážíme následující
dvě hešovací funkce: jednu pro univerzum 64-bitových čísel,
druhou pro univerzum řetězců. Typ u32 je 32-bitové celé
číslo bez znaménka, sčítání a násobení v něm automaticky
probíhají modulo 232; podobně u64 pro 64-bitové.

u32 f(u64 x)
{

return (x * 13043831838999645351) >> 32;
}

u32 g(std::string x)
{

u32 y = 1;
for (size_t i=0; i < x.size(); i++)

y = y * 2654289787 + x[i];
return y;

}

Úkol 2 [1b]: Najděte kolizi v f , tedy dvojici x a x′ takovou,
že f(x) = f(x′).

Úkol 3 [3b]: Najděte pro f multikolizi: čísla x1, . . . , x1 000 000
taková, že f(xi) = f(xj) pro každé i ̸= j.

Úkol 4 [2b]: Najděte pro g dva kolidující řetězce, které jsou
hezké: složené z nejvýše 1000 velkých písmen, malých pís-
men a číslic.

Úkol 5 [5b]: Najděte pro g 1 000 000 kolidujících hezkých
řetězců.

V úkolech 2 a 4 ukažte konkrétní kolidující prvky. Ve všech
čtyřech úkolech na kolize odevzdejte algoritmus, kterým jste
kolize vygenerovali, spolu s asymptotickým odhadem prů-
měrné složitosti algoritmu vzhledem k počtu přihrádek he-
šovací funkce (místo 232 předpokládejte obecnou mocninu
dvojky) a požadovanému počtu kolidujících prvků.

V příštím dílu vymyslíme, co si se škodolibými uživateli
počít. Jako obvykle nás zachrání generátor náhodných čísel!

KSP pro vás připravují studenti Matematicko-fyzikální fakulty Univerzity Karlovy.
Realizace projektu byla podpořena Ministerstvem školství, mládeže a tělovýchovy.

Webové stránky:
https://ksp.mff.cuni.cz/

E-mail:
ksp@mff.cuni.cz

Organizátoři a kontakty:
https://ksp.mff.cuni.cz/kontakty/

– 4 –

https://ksp.mff.cuni.cz/
mailto:ksp@mff.cuni.cz
https://ksp.mff.cuni.cz/kontakty/

	Zadání 3. série 38. ročníku KSP
	38-3-1: Zahrada s bonsajemi
	38-3-2: Stavba sjezdovky
	38-3-3: Těžká úloha
	38-3-4: Medvědi
	38-3-S: Kouzlo hešování

