Podzimní soustředění KSP 2006
Seznam přednášek
Tento spisek jest nabídkou přednášek, které byste na soustředění mohli slyšet, čili jakási obdoba matfyzácké Karolínky (ta je ale, pravda, ještě stále o něco tlustší). Přednášek je daleko víc, než kolik se dá za týden stihnout, a tak je na vás, abyste si vybrali, o které máte opravdu zájem; pokud byste rádi slyšeli ještě o něčem dalším, klidně to k přednáškám připište, třeba se najde někdo, kdo by vám o tom rád pověděl. Berte a vychutnávejte!
Údaje o jedné přednášce vypadají asi takto:
Úvod do moderní teorie vlkodlaků, čili též praktická dæmonologie a naiadologie.
Předpoklady: Měsíc v úplňku.Dozvíte se (čteno v obvyklém pořadí): kód předmětu (pro snadnější odkazování na konkrétní předměty; první písmenko značí obor), jméno přednášky, hvězdičky značící obtížnost (žádné pro velmi jednoduchou přednášku až dvě pro dosti náročnou), v uvozovkách motto přednášky; dále pak jméno přednášejícího, stručný obsah přednášky (na detaily se můžete ptát e-mailem nebo na místě) a speciální předpoklady nutné k účasti na přednášce (nutnost o něčem něco vědět, ale lze i jinak).
Informatické přednášky – teoretické
Problém, algoritmus a program. Časová a paměťová složitost problémů i algoritmů. Složitost rekurzivních algoritmů, složitost v průměrném případě.
Trochu hlouběji o složitosti: amortizovaná časová složitost, dolní odhady, nedeterministické výpočty a třída NP, NP-úplné problémy a příklady redukcí.
Předpoklady: I000Složitost opravdu důkladně: nejrůznější složitostní třídy a vztahy mezi nimi. Vztahy mezi časem a prostorem, odstraňování nedeterminismu a Savitchova věta. Jak víme, že všechny třídy nejsou stejné: dolní odhady a věty o hierarchii. Stroje s kvantifikátory, třída PSPACE a polynomiální hierarchie. Pravděpodobnostní třídy složitosti. Orákula a neuniformní složitost.
Předpoklady: I001Některé problémy se dají vyřešit snadno, jiné obtížněji a některé dokonce vůbec. Obecněji: Ať si vymyslíte jakýkoliv rozumný programovací jazyk, vždycky existuje problém, který se v něm nedá vyřešit. Výpočetní modely a univerzální stroje, rekurzivně spočetné a rekurzivní množiny a funkce. Halting problem a diagonální důkazy. O krok výš aneb orákula a relativní vyčíslitelnost, o krok níž aneb primitivně rekurzivní funkce.
Co to jsou grafy, jak je v programech reprezentovat a hlavně k čemu se dají použít. Prohledávání grafu do šířky i do hloubky. Hledání nejkratších cest: Dijkstrův a Floydův algoritmus. Union-find problem, hledání minimální kostry, topologické třídění grafů a kreslení grafů jedním tahem.
Pokročilejší grafové algoritmy: toky v sítích, párování v grafech, testování vícenásobné souvislosti a silné souvislosti.
Předpoklady: I004Má smysl reprezentovat graf maticí? Co vlastně jsou matice a jak se násobí? Jak nejrychleji umíme matice násobit a jak souvisí násobení matic s hledáním sledů v grafu? Proč funguje Floyd-Warshallův algoritmus a jak ho zobecnit, aby počítal jiné věci, třeba nejspolehlivějí sled? Nebo aby z konečného automatu vytvořil regulární výraz? A proč je tu tolik otázek? Nevíte?
Jak si ukládat data natolik šikovně, abychom je nejen neztratili, ale také našli dříve, než si pro nás přijde Smrť. Klasické struktury jako pole, seznamy, vyhledávací stromy (vyvážené, AVL, a-b, červeno-černé), haldy (binární a obecně regulární) a v neposlední řadě hashování.
Důmyslnější datové struktury: trie, intervalové stromy, splay stromy, BB-α stromy; geometrické struktury pro lokalizaci bodů v rovině; binomiální a Fibonacciho haldy, leftist haldy a 2-3 haldy. Též několik přátelských randomizovaných datových struktur: skip listy a treapy.
Ještě důmyslnější datové struktury dle přání posluchačů. Možno servírovat například: dynamické reprezentace grafů (Sleator-Tarjanovy stromy, ET-stromy, Fredericksonovy topologické stromy), vícerozměrné datové struktury (zobecnění vyhledávacích stromů a intervalových stromů), obecné dynamizační schéma, triky pro malé integery, persistentní datové struktury et cetera.
Na motivy knížky The Art of Computer Programming od prof. Knutha si předvedeme několik nevšedních, zato však velmi elegantních algoritmů: hledání největších společných dělitelů bez dělení, násobení dlouhých čísel v čase O(n1.59) a možná i rychleji, residuovou aritmetiku, slévání setříděných posloupností v konstantním prostoru, pravděpodobnostní testování prvočíselnosti a jiné kejkle.
Základní třídící algoritmy, které se vyplatí znát: quicksort, mergesort, heapsort, radixsort a také něco na velké soubory – vnější třídění. Vyhledávání v polích: půlení intervalu, hledání mediánu resp. k-tého největšího prvku v lineárním čase.
Vyhledávání čehokoliv ve velkém množství textu: Prostá vylepšení brute-force algoritmů: Karp-Rabin, Boyer-Moore. A algoritmy chytřejší: Morris-Pratt, Knuth-Morris-Pratt, Aho-McCorasicková. Konečné automaty prakticky, regulární a „regulární“ výrazy.
Předvedeme všeliké algoritmy na zpracování řetězců, které mají (mimo jiné) společné to, že pracují v lineárním čase: třídění za pomoci kyblíčků, vyhledávání podřetězců v textu (Boyer-Moore, trie, Knuth-Morris-Pratt, Aho-McCorasicková), konstrukce suffixových stromů (aneb jak obrátit řetězec naruby) a jejich použití, nejdelší společné podřetězce a třeba i Burrows-Wheelerova transformace.
Přehled základních kompresních algoritmů: triviální algoritmy (RLE), statistické metody (Huffmanovo a aritmetické kódování), slovníková komprese (LZ77, LZ78, LZW), Burrows-Wheelerova transformace (BZIP). Pokud zbude čas, tak i něco o ztrátové kompresi obrázků a zvuku (prediktory, wavelets, JPEG, MPEG, fraktály).
Některé úlohy jsou tak těžké, že je za dobu existence tohoto vesmíru nedokážeme vyřešit (naneštěstí to zatím o většině takových úloh ani nesvedeme dokázat). A tak nám nezbývá než se je pokusit řešit alespoň přibližně. Horolezecké algoritmy, metoda Monte Carlo, simulované žíhání a hit loňské sezóny – genetické algoritmy. Ovšem raději bychom chtěli znát dopředu odhad chyby: aproximační algoritmy a aproximační schémata. Ne vše se aproximovat dá, ale to už přenecháme na I021.
K čemu jsou při programování dobrá náhodná čísla a jak je generovat. Algoritmy pravděpodobnostní a randomizované, časová složitost v průměrném případě. Proč používat a proč nepoužívat Quicksort. Inkrementální algoritmy (třeba na konvexní obal), vyhledávání v poli v konstantním čase za pomoci hashování, konstrukce perfektního hashování, randomizované datové struktury (skip listy a treapy). Interaktivní protokoly aneb jak vyhrát nad falešným hráčem. Problém studny na Pražském hradě. Míchání karet.
Předpoklady: Vědět, co je to pravděpodobnost (M001), a být ochoten trochu počítat.Když nestihne problém vyřešit jeden procesor, proč jich nepoužít víc? Zkusme na chvíli zavřít oči a představit si, že máme stroj, který umí například pro sečtení N čísel zapnout N procesorů ... nebo rovnou N2, všechny se společnou pamětí a společným programem – teoretikové takovému počítači říkají PRAM. Ukážeme si rychlé paralelní algoritmy všeho druhu: aritmetiku, slévání a třídění, grafové algoritmy, vše v (poly)logaritmickém nebo dokonce konstantním čase. Po probuzení do reality všedního dne trocha praxe: SMP, NUMA, Connection Machine, clustery, koordinované screen savery, FPGA.
Vše, co jste chtěli vědět o šifrování a báli se vám na to odpovědět. Šifrovací systémy jako lego: základními kostičkami nám budou symetrické a asymetrické šifry a jednosměrné funkce, stavět z nich budeme kryptografické protokoly na bezpečný přenos, autentikaci, digitální podpisy a třeba i jak si hodit korunou po telefonu. Jak šifru zkonstruovat a jak ji rozluštit. Předvedeme nerozluštitelnou šifru a dokonce to o ní i dokážeme.
Pokročilejší (dešifruj: zběsilejší) partie vědy kryptologické: utajené výpočty, zero-knowledge proofs, sdílení tajemství, podprahové informace a kvantová kryptografie. Aplikace v reálném životě: digitální peníze, volební systémy. Různé metody útoků na šifry a kryptografické protokoly. Problémy distribuce klíčů a proč se jí raději vyhnout (a jak: Diffie-Hellman key agreement, komutativní šifry). Stručný přehled souvisejících partií matematiky a teorie složitosti.
Předpoklady: Základní povědomí o šifrování (I018) a víra v existenci náhodných číselO tom, jak šifrovací algoritmus RSA funguje, proč funguje a jestli bude ještě fungovat. A také jak se dá rozumně rychle naprogramovat.
Co všechno lze někomu dokázat, když mu z důkazu smíme ukázat jen 3 bity? Ukážeme, že mnohem víc, než bychom čekali. Jako důsledek pak dostaneme, že některé problémy jsou tak těžké, že je nejde řešit ani přibližně (například nalezení největší kliky v grafu).
Předpoklady: základy algebry (M008), složitosti (I001) a víra, že P≠ NPJak si napsat vlastní jednoduchou realtime strategii ve stylu starého Dune. Seznámíte se se základy diskrétní simulace a algoritmem A*, který slouží pro rychlé hledání cest.
Předpoklady: základy OOP a Dijkstrův algoritmusInformatické přednášky – programovací jazyky a techniky
Datové typy jazyka C, programové konstrukce, základy práce s ukazateli v jazyce C. Seznámení se standardními knihovnami jazyka C.
{ }1[x]+++++x[1]
")
[I101]
Céčkové speciality aneb všechno, co jste chtěli o Céčku vědět, ale
nebylo se koho zeptat. Pořadí vyhodnocování, side effecty, sequencing pointy,
funkce s proměnným počtem parametrů, preprocesorové triky, celá pravda o vztahu
pointerů a polí, o jménech typů a o příkazu switch; alignment, NULL, void, volatile.
Všelijaké zrady (velikosti typů, (a+b)+c ≠ a+(b+c), znaménka ...). Dialekty
Céčka od K&R až po (staro)nový standard C99 a různá nestandardní rozšíření jazyka.
Proč jsou objekty potřebnější v mysli programátorově než v jazyce a proč je C lepší
než C++
:–)
++
a Object Pascalu
("I život je objektový, tak proč ne programování...")
[I102]
Objektově orientované programování přináší jiný náhled na návrh řešení problémů.
Vysvětlíme, jak se liší objektové a procedurální programování. Co je to objekt a co třída.
Základní vlastnosti objektů (dědičnost, zabalení, polymorfismus). Co je to metoda,
překrývání metod, virtuální metody (pozdní vazba) a čistě virtuální (abstraktní) metody.
Syntaxe deklarací tříd v C++
a Delphách, viditelnost a přístupová práva ke členům tříd.
Pokročilé techniky implementace algoritmů v C++
. Šablony a jejich použítí,
standardní knihovny STL a malý úvod do návrhových vzorů.
Spíš povídání o tom, co je to .NET, jak funguje, proč funguje zrovna tak, a k čemu to celé je a není vhodné. Rozebereme používaný mezikód i důvody, proč ho (ne)používat, a vezmeme si na mušku i C#.
Jednoho dne se Larry Wall rozhodl, že nasype do jednoho velkého kotle spousty programovacích jazyků a unixovských utilit, za stálého míchání povaří, posléze přecedí, přikoření a implementuje. Tak vznikl Perl, jazyk původně určený hlavně na zpracování textu, ovšem jak se ukázalo, též šikovný na spoustu dalších věcí. Asociativní pole, libovolně složité datové struktury za pomoci referencí, balíčky a objekty zdarma a hlavně regulární výrazy zde a všude. Zkrátka jazyk, který lze jedině milovat nebo nenávidět, nic mezi tím.
Proč psát dlouhé a složité programy, když stačí dostatečně přesně popsat situaci a pak se prostě zeptat? Toť princip logického programování, který si ukážeme na Prologu.
Lehký úvod do funkcionálního programování a jazyků z lispovské rodiny (Common Lisp, E-Lisp, Scheme, KSP Lisp atd.). Všechno je funkce, zbytek jsou seznamy (a konec konců funkce je také druh seznamu). Proměnné aneb příběh se nemění, jen příjmení a jména. Jak se programuje v Lispu a jak se programuje Lisp.
Předpoklady: Netrpět uncinofobií (((to jest chorobným strachem ze závorek)))Dynamické programování je programátorská technika využívající velice prostinkého nápadu: Proč něco počítat několikrát, když to mohu spočítat jednou a výsledek si uložit? Na této přednášce si ukážeme, že tento jednoduchý nápad může pomoci efektivně vyřešit i poměrně obtížné úlohy.
Povíme si, co je to jazyk XML, jak vznikl a k čemu je dobrý. Zároveň probereme nástroje pro práci s XML dokumenty, jejich načítání (parsování), generování, validaci atd. Z pokročilejších technik pak ukážeme vyhledávání v XML pomocí jazyka XPath a transformace XML dokumentů pomocí XSLT. Zbyde-li čas ukážeme si i několik konkrétních aplikací (XHTML, WML, SVG, ODF ...).
Co je to databáze a databázový systém. ER diagramy a jejich převod na tabulky. Klíče, nadklíče, podklíče a paklíče. Normální formy, algoritmus dekompozice a algoritmus syntézy. Jazyk SQL a jeho použití na skutečných databázích. Zbude-li čas, přijde i ukázka relační algebry a doménového a n-ticového kalkulu.
Řekneme si, jak fungují současné vnější paměti (především pevné disky) a jak se s nimi pracuje. Protože jsou o hodně pomalejší než operační paměti, je potřeba navrhnout vhodnější datové struktury, které urychlí čtení z takovýchto zařízení. Povíme si o sekvenčních, index-sekvenčních a indexovaných souborech. Navrhneme vhodné způsoby ukládání indexů (B-stromy, hašování). A zbyde-li čas, povíme si i něco o vyhledání podle více klíčů.
Jak vyvíjet program delší dobu a nezbláznit se u toho. Něco o tom, jak verse radši nespravovat, a pak dál přes správu ruční pomocí diff a patch, přes CVSku a Subversion až k Archu, Gitu a Mercurialu. Něco o tom, jak udržovat patche proti vyvíjejícímu se mainlinu, a.k.a. quilt. Návod, jak si pořídit zálohu na jiném kontinentě, bude jako perlička na závěr.
Přestože prazáklad programování poskytují převážně poznatky přírodovědců, přísluší patřičná pozornost programátorské praxi. Předvedeme proto publiku přednášejícími přímo provozované programátorské projekty.
Většina programátorů dřív nebo později zjistí, že počítačový svět nekončí hranicí jejich monitoru a že je mnohem rozmanitější než nekonečné zelené pláně windowsové pracovní plochy. Jenže jak se v takovém světě domluvit a jak psát programy, aby fungovaly všude? Na co se dá spolehnout a na co ne, jaké se hodí znát jazyky a jaké knihovny k nim. K čemu jsou dobré standardy a k čemu configure. Proč je někdy potřeba vynalézat kolo. Za rok se vrátím aneb jak (nechat) program udržovat.
Stručný přehled unixových utilit. Jak si napsat vlastní skript, přehled základních programových konstrukcí. V případě zájmu a času seznámení s programem awk.
Informatické přednášky – hardware, operační systémy a spol.
Historie a vývoj počítačových technologií a současných architektur. Co je to procesor, jak se programuje (instrukční sady) a jak se chová. Přehled tříd procesorů (skalární a vektorové, RISC). Jak procesor komunikuje s okolím (čipová sada). Nezbytné periferie: vnitřní a vnější paměti, vstupní a výstupní zařízení.
V I200 se dozvíte, jak fungují „opravdové“ počítače, zde pro změnu na čem počítají teoretici. Všechny počítače jsou si rovny, jen některé jsou si rovnější. Turingův stroj obyčejný, nedeterministický, univerzální a paralelní, orákula, Random Access Machine (RAM), Parallel RAM, Pointer Machine, Data Flow Machine, rekursivní funkce, Markovovy algoritmy, reverzibilní algoritmy, buněčné automaty, ale třeba i dlaždičky v koupelně.
Jak je vlastně možné, že se víc procesorů snese na jednom smetišti? Spinlocky, semafory, paměťové bariéry. K čemu je dobré dát víc vláken do jednoho procesoru a proč se dává víc procesorů na jednu destičku křemíku. Jak se nám z paměti RAM postupně stává „not-so-Random Access Memory“, co jsou cache a proč jsou dneska tak důležité.
Jak vypadá architektura dnešních operačních systémů aneb co musí programátor věďět, aby mu nepadala Wokýnka/Tučňáci. Správa procesů a vláken, plánování, synchronizace. Paměť, adresace a její přidělování. Správa souborů, filesystémy. Čemu se říká jádro a proč se spojuje s pudlem.
Kamarád u černobílého textového okna září blahem. Chcete poznat, proč? Jak UNIX vznikl, k čemu je dobrý a k čemu třeba není. UNIXová filosofie. Kouzlo scriptů. Kouzlo speciálních souborů. Kouzlo propojování programů. Kouzlo nechtěného. UNIX byl napsán v C a C vzniklo pod UNIXem.
Co ten kernel vlastně je, čím se liší programování v kernelu od normálního kódu, jak sobě vlastní kernel postaviti a jak v něm něco opraviti. Kde najít nejnovější zdrojáky a kde najít pomoc, až se něco pokazí.
Co jsou to Windows a jaká je jejich filozofie? Od kdy jsou Windows moderním operačním systémem? Jaké jsou rozdíly mezi verzemi Windows, jak Windows vypadají zevnitř a v čem se liší Windows od unixu. Nakousneme také Windows API a zjistíme, proč jsou Wokýnka tak (ne)populární.
Jak funguje Internet a počítačové sítě vůbec: od elektronů v drátech (fotonů v optických kabelech, nebo elektro-magnetických vln) přes packety a jejich routing až k jednotlivým síťovým službám. Protokoly rodiny TCP/IP, síťové topologie (a proč Internet vlastně nemá žádnou), internetworking. Pár taktů hudby budoucnosti: IPv6, multicasting, přenos v reálném čase atd.
Tato přednáška navazuje na „Sítě a Internet“ a zaměří se na konkrétní aplikační protokoly nad TCP/IP. Zajímá vás, jak funguje web, pošta, DNS, FTP nebo třeba Telnet? Poodhalíme roušku tajemství těchto protokolů a když zbyde čas, přidáme ještě nějaké perličky jako RPC (vzdálené volání procedur) nebo SIP (protokol pro internetovou telefonii).
Předpoklady: I207Čím se liší PDA a mobilní telefon, jak vlastně takový mobilní telefon funguje a jak vypadá struktura základnových stanic dovolující, aby fungovat mohl. Power management, vlastnosti různých baterií, metody šetření elektřinou, překlad všech možných 3-písmenných zkratek. Malý přehled toho, co se dá na takových malých věcech spustit.
Jak naučit robota pohybovat se v prostoru. Problémy při konstrukci samočinných robotů, navigační algoritmy s omezeným množstvím paměti a veselé historky o tom, jak to vypadá, když se něco pokazí.
Každý je zná, každý je používá. A skoro nikdo neví, jak ve skutečnosti fungují. Fyzikální vlastnosti CD, výroba lisovaných disků, konstrukce snímače (čočka, zaměřování). Fyzická struktura a mnohaúrovňové zabezpečení dat: EFM, rámce, sektory, subkanály a stopy, L1 a L2 Reed-Solomonovy samoopravné kódy na rámcích a sektorech, a další. Různé formáty disků: CD-DA, CD-ROM, jakož i exotické (S)VCD, CD-i, aj. Média CD-R a CD-RW. „Ochrany proti kopírování“ (čti: úmyslně poškozené disky) paranoidních nahrávacích společností, které jsou vlastně ve skutečnosti k ničemu. Pokud zbude čas, nakousneme i modernější disky DVD.
Informatické přednášky – lingvistika a zpracování jazyků
O jazycích přirozených, počítačových a matematických, jejich popisu a rozpoznávání. Regulární jazyky a výrazy, konečné deterministické a nedeterministické automaty. Bezkontextové a kontextové gramatiky a odpovídající výpočetní modely. Chomského hierarchie.
Přirozené jazyky a jak s nimi na počítači zápolit. Jak naučit program rozumět češtině nebo angličtině a nedejbože mezi nimi překládat (dokážeme vůbec říci, co to znamená?). Jak vypadá počítačová lingvistika a čím se liší od lingvistiky klasické. Lexikální, syntaktická a sémantická analýza vět a vztahů mezi nimi. O češtině, kterou vás učili ve škole, a jak je to doopravdy. Co nejde a co také nejde; příležitost k bezmocnému úpění? Ne tak docela, statistické metody by nás mohly aspoň zčásti zachránit: co je to korpus, entropie textu, jazykový model a k čemu je to všechno dobré. A co na to říká umělá inteligence. A co Jan Tleskač?
Co je potřeba udělat, aby počítač dovedl mluvit a poslouchat. Úvod do fonetiky – hlasové ústrojí, hlásky, fonémy, spektrální znázornění řeči. Formantová syntéza, difónová syntéza, transformace psaného textu na mluvený, modelování prosodie. Akustický a jazykový model, borcení časové osy.
Programovací jazyky jsou všelijaké – procedurální, funkcionální či logické,
typované silně, slabě nebo třeba i vůbec, objek... stop, vykládat si o všelijakých rodech,
druzích a čeledích jazyků by byla nejspíš nuda, a tak si raději zajdeme do zoo
a na ta zajímavější zviřátka se podíváme osobně: APL (či A+, případně J:
průvan ve skladišti písmenek), Intercal (když existuje GO TO
, proč by nemohlo
existovat COME FROM
?), Forth (pozpátku píšeme výrazy všechny úplně), Shakespeare
(program coby divadelní hra), Oook!, Lingua::Romana::Perligata a další.
Povídání o tom, jak překladače fungují uvnitř – jak se program parsuje, jak se optimalizuje kód atd. Co je to front end, back end, „middle-end“, mezikód, CSE, peephole optimizer, instruction scheduling, loop unrolling, loop strength reduction a jiná arkána umění kompilátorového. Jak psát programy tak, aby kompilátoru chutnaly, co optimalizovat ručně a co naopak udělá kompilátor lépe než my.
Předpoklady: Základní povědomí o tom, co to je procesor a co dělá.Informatické přednášky – grafika a typografie
Kreslení a zpracování obrazu na počítači. Souřadnice (rovinné, prostorové i barevné) a jejich transformace. Základní grafická primitiva: body, úsečky, kružnice, elipsy, Bézierovy křivky. Vyplňování n-úhelníků a křivkou ohraničených oblastí, flood fill. Pár triků navíc: maticové filtry, anti-aliasing a dithering. Grafické formáty a komprese obrázků. Základy trojrozměrného promítání a vykreslování scény.
Základní algoritmy pro řešení geometrických úloh – konvexní obal, dva nejbližší body v rovině, výpočet obsahu nekonvexního mnohoúhelníka, lokalizace bodu, scanline algoritmus a jeho použití pro výpočet obsahu sjednocení obdélníků. Pokud bude čas a zájem, povíme si i něco o základech kombinatorické geometrie.
Trocha o tom, jak je v počítačích, fotoaparátech, televizích a podobných zařízeních zapsáno, jakou mají jednotlivé pixelíky barvu. Systémy RGB, CMY(K), HSV, XYZ a jim podobné s jejich výhodami i neduhy. Půltónování, převody palet a základy stínování.
Popovídáme si o tom, jak a kam se vyvíjí současná 3D grafika, dotkneme se shaderů a zjistíme, jak se to všechno programuje v OpenGL.
Předpoklady: I400Jemný úvod do jazyka určeného k tisku grafiky a textu. Základní principy, řídící konstrukce a datové struktury, cesty a kreslení objektů, transformace souřadnic, DSC komentáře. Co je to PDF (Portable Document Format). Různé druhy fontů (např. Type1, TrueType) a jak fungují.
Povíme si o tom, jak formát JPEG funguje, jak vypadá uvnitř a proč někdy dosahuje nebo nedosahuje dobrých výsledků. Také si povíme o tom, jak takové obrázky rychle načítat a ukládat.
Předpoklady: Povědomí o Fourierově transformaci (M011)Jak na počítači text nejen napsat, ale také vysázet tak, aby pěkně vypadal a aby (což je důležitější) se i příjemně četl? Jak se sází pohádka, jak báseň a jak vzorové řešení KSP plné komplikovaných vzorců? Jak jde dohromady staleté umění typografické a moderní technika? Jednou z možných odpovědí na všechny takové otázky je TeX – není sice WYSIWYG, ale nakonec zjistíme, že tak to je lepší. Ale u toho neskončíme: Metafont, Postscript, pdfTeX a sázení hudby pomocí Lilypondu.
Jak si nakreslit vlastní fraktál. Praktické ukázky IFS fraktálů a L-Systémů. Návod jak vykreslit a obarvit Mandelbrotovu a Juliovu množinu nebo Newtonovy fraktály.
Předpoklady: Znalost komplexních číselMatematické přednášky
Pokud budeme v životě věřit všemu, co je „přeci zřejmé“, dostaneme se brzy do potíží a v matematice to platí dvojnásob. Ale co s tím? Přírodní vědy si vymyslely verifikovatelné experimenty a matematici logiku a dokazování. Co je to výrok, co jeho důkaz a proč se axiomy nedokazují. Jenže jak si je zvolit? A jak se z toho všeho postaví celá matematika? A bude vůbec matematika někdy celá? Studená sprcha pana Gödela coby sebevražedné dovršení snahy získat dokonalý jazyk. Logika coby hra a problém líného profesora. Důkazy boží existence a neexistence.
Předpoklady: M000Toto je přednáška o základech teorie pravděpodobnosti a statistiky. Dozvíte se, co to je podmíněná pravděpodobnost, rozdělení, střední hodnota nebo rozptyl, jak se to všechno počítá a k čemu je to dobré. Součástí přednášky bude i několik zajímavých příkladů z praxe a krátký kurs přežití ve světě plném chybných statistik.
Hříčka: ve společnosti šesti lidí vždy existují tři, kteří se navzájem znají, nebo neznají (ověřte ručně). Obecněji, pro libovolné „tři“ existuje „šest“ tak, že shora uvedené tvrzení platí. To je jedna z Ramseyových vět, které říkají, že v každém dostatečně velkém objektu vždy existuje nějaký stejnorodý podobjekt. Jednoduchá tvrzení Ramseyova typu, Ramseyova věta pro grafy dvou a více barev, pro systémy p-tic, nekonečná verze a aplikace. Populárně řečeno, chaos to má těžké.
V teorii grafů zaujímá významné místo problém barevnosti grafu, tedy přiřazení co nejmenší počtu barev vrcholům tak, aby se hranami dotýkaly pouze různobarevné vrcholy. Aplikace problému v informatice je nasnadě. Ukážeme si několik zajímavých teoretických výsledků. Barvení grafů na plochách vyššího rodu, channel assignment problem, hranová barevnost, listové barvení, vybíravost grafů a jejich tříd.
Převážně neuspořádaný přehled základních matematických pojmů a konstrukcí. Pár magických slov pro představu: monoidy, grupy, okruhy, obory integrity, tělesa, vektorové prostory, polynomy, částečná uspořádání, booleovy algebry, filtry, ideály. Také si povíme, na co se takové věci dají použít.
Teorie množin tvoří páteř veškeré matematiky. Pomocí množin se totiž modelují veškeré objekty, které se v matematice vyskytují. Celou teorii prostupuje magický pojem nekonečno. Jakým způsobem se tohoto, pro spekulativní mysl ošidného, termínu zhostila moderní matematika? Množiny a jejich velikosti. Cantorův diagonální trik. Ordinály a houšť kardinálů. Potenciální kontra aktuální nekonečno. Myslíte si, že máte dobrou představu o tom, co jsou přirozená čísla? Možná vás z ní vyvedeme. A co teprve reálná čísla. Problematika volby axiomů determinovanosti versus výběru.
Vrcholové a hranové barvení grafů, Eulerova věta, hamiltonicita grafů, rovinné grafy a grafy na plochách, Kuratowského věta, Eulerova formule, věta o skóre, grafové minory.
Lineární algebra původně vznikla jako elegantní prostředek k popisování geometrie lineárních útvarů (bodů, přímek, rovin, ...) v libovolněrozměrném prostoru, ale ukázalo se, že její kouzlo dosahuje daleko dál. Vektorové prostory, lineární (ne)závislost, báze, lineární zobrazení a matice, determinanty, tenzory. Konečné projektivní roviny.
Jak komunikovat po lince, která průměrně každý k-tý bit přenese špatně? K tomu se hodí teorie samoopravných kódů, která nás naučí: distance slov a jejich souvislost s detekcí a opravou chyb, paritní a lineární kódy, perfektní kódy, Reed-Solomonovy a vůbec polynomiální kódy a několik dolních odhadů nádavkem. A jak s teorií kódů souvisí třeba čeština?
Jak se nám matematika změní, když připustíme, že se záporná čísla také dají odmocňovat? Čísla imaginární a komplexní a jejich různé podoby. Součtové vzorce pro sin a cos dostaneme téměř zdarma. K čemu se hodí v matematice a k čemu ve fyzice. Proč se zastavit u dvou složek aneb quaterniony, octoniony a Cliffordovy algebry. Remember, life is complex.
Chytrý trik pana Fouriera patří již dávno k matematické a fyzikální klasice a ukazuje se, že se hodí i při programování, počínaje digitálním zpracováním zvuku a obrazu (spektrální analýza či třeba komprese) a konče nečekaně rychlým násobením polynomů a předlouhých čísel.
Předpoklady: Základy komplexních čísel (M010)Při navrhování algoritmů a počítání jejich složitosti narazíme na celou řádku zajímavých a ne úplně triviálních kombinatorických problémů, a tak se naučíme, jak na ně. Základní triky s faktoriály a kombinačními čísly, sčítání konečných a občas i nekonečných řad, rekurentní rovnice a princip inkluze a exkluze; taktéž metoda vytvořujících funkcí coby velký podvod v mezích zákona.
Rozličné kombinatorické hry se zápalkami, kamínky, barvičkami či grafy. U některých si ukážeme výherní či obranné strategie, u některých dokážeme, že sice příslušná strategie existuje, ale nikdo ji ve skutečnosti nezná. Jak kombinatorické hry souvisí s M002. Zmíníme například: piškvorky, kruhové a zobecněné piškvorky, hex, různé varianty Nimu, vojáčci v poušti, speciality à la Herkules a Hydra, a další. Můžeme se zapovídat i o tom, jak podobné hry programovat na počítači.
Budeme se věnovat především tzv. pozičním hrám. Do této rodiny patří piškvorky a jejich příbuzní. Jednoduché piškvorky by však byly pod naši úroveň – zajímat nás budou především vícerozměrné piškvorky, jejich další zobecnění a varianty, hry typu „tvůrce-ničitel“, obecné poziční hry na hypergrafech, využití metody potenciálové funkce v herních strategiích a způsob, jakým se dá v teorii her aplikovat elegantní matematika typu M002 či pokročilejší kombinatoriky.
Předpoklady: Nebát se pokročilejší matematiky, M013 výhodouFyzikální přednášky
Pozorování podzimní hvězdné oblohy spojené s astronomickým minikursem. Od antických a ještě starších bájí k modernímu příběhu o Velkém Třesku a naopak od celkem seriózní vědy k rozmarnému filosofování o světě a našem místě v něm. Hvězdáři a hvězdopravci, „Už staří Řekové...“, měření a vážení na dálku, vývoj hvězd a kosmologie, antropický princip, kdo schvaluje fyzikální zákony? Jak se podle hvězd orientovat a jak fungují sluneční a třeba i měsíční hodiny.
Předpoklady: Počasí dovolí. Měsíc nejlépe v novu.Jak fungují digitální elektronické obvody, ze kterých jsou postavené (nejen) počítače. Nuly a jedničky jako napěťové úrovně; kombinační obvody (transistory, hradla, multiplexery), sekvenční obvody (klopné obvody, registry, čítače) a asynchronní obvody. Troška matematiky okolo aneb logické formulky a De Morganovy zákony; proč stačí jenom jeden typ hradel. Třístavová hradla a sběrnice ... zde plynule přecházíme v I200.
Ostatní přednášky
Jak napsat mail tak, abyste neurazili obchodníka, a jak napsat mail naopak tak, abyste ho urazili co největší kus. Umění chrlení ohně (a.k.a. flames) včetně praktických ukázek. A něco o tom, jak oheň nechrlit.
Převážně nevážné a mírně nepřed-vídatelné po-vídání o jazyku i jazyce. Kolik těch jazyků vlastně je, kde se vzaly a kam směřují? Slovní zásoba na cestách aneb nepožívejte odporné termity. Kde jsme přišli k pravidlům a proč pravidla nejsou všechno. Existují synonyma? A překlady? Proč je jazyk nejednoznačný a proč je to dobře. Co má společného čínština s angličtinou? Jak se na jazyk dívá matematik a jak se na matematiku dívají lingvisté. Jak vzniklo písmo? A jak otazník? &c.
Jak se vlastně hudba v počítači ukládá a jak se vyvíjely formáty pro ukládání hudby. Budeme si spíš povídat a pokud bude k dispozici technika, pustíme si i hojně ukázek.
Hudební nástroje více či méně příbuzné s dnešní kytarou patří v současnosti k těm nejrozšířenějším. Kytaře se budeme věnovat přednostně, dostaneme se však i k nástrojům, jako jsou banjo, mandolína, brač, loutna a další. Jak se liší různé druhy kytar, jak funguje kytara elektrická, elektroakustická, steel-kytara. Doplňky (kapodastry, slidery, typy strun), tabulatury, nákup a údržba nástrojů. Různé hráčské techniky a především jejich hojné praktické ukázky, při vhodném počtu zájemců možno rovnou propojit s jejich výukou.
Nezávazné povídání o Matfyzu a základním matfyzáckém folklóru. Určitě si přečteme matfyzáky sepsaný Úvod do matfyzáka a zazpíváme pár matfyzáckých písní. Zbytek už bude záležet na tom, co budete chtít slyšet.
Jak ze neztratit v terénu a jak se neztratit na moři. Vývoj umění navigace. K čemu je důležité slunce a hvězdy, ale proč mořeplavcům nestačí, alespoň dokud neobjevíme hodinky. Použití mapy, busoly a GPSky. Orientace bez pomůcek a použití ariadniny nitě. Bleskový úvod do sférické astronomie a časomíry čili jak (ne)postavit sluneční a třeba i měsíční hodiny. Jak reprezentovat mapu v počítači a jak raději ne. Jak zapisovat polohu místa na Zemi (přestože Země má tvar podivně nakousnuté hrušky) a kolika způsoby to jde. Různé druhy map a jejich zkreslení. Jak se neztratit v kartografii. Praktické cvičení v terénu.
Jak za pomoci digitálního foťáku vytvořit fotku, na kterou se dá koukat, a o tom, co se dá zkazit tak, že už se na fotku koukat nedá. Vztahy mezi clonou, časem, citlivostí, rozmazáním fotky a šumem. Zoom a proč ho nepoužívat. Jak poznat špatný foťák a proč megapixely nejsou všechno. Jak kouzlit s foťákem, který nemá ani základní ovládání. K čemu se dá použít foťák v mobilu. Pokud počasí dovolí, vyrazíme ven: vlastní foťák vítán, vlastní krabička s CCD čipem taktéž.