Podzimní soustředění KSP 2015
Seznam přednášek – Karolínka
PřihlásitMůžete si také stáhnout PDF verzi.
Hlasování o přednáškách na Podzimní soustředění KSP již skončilo a soustředění již také proběhlo.
Níže se alespoň můžeš podívat na seznam přednášek, může Ti být inspirací nebo motivací třeba pro příští soustředění.
- Základní přednášky
- Rozšiřující přednášky
- Půlnoční přednášky
Základní přednášky
V této kategorii sídlí přednášky, které se dají považovat za základní stavební kameny informatiky, ať teoretické, či praktické.
Algoritmy a datové struktury
Problém, algoritmus a program. Časová a paměťová složitost problémů i algoritmů. Složitost rekurzivních algoritmů, složitost v průměrném případě. Ukázky jednoduchých (obvykle aritmetických a třídicích) algoritmů a výpočet jejich složitosti.
Základní výbavou každého informatika jsou různé standardní algoritmy, zde si ukážeme ty nejdůležitější z nich. Třídicí algoritmy – porovnávací i přihrádkové. Hledání k-tého nejmenšího prvku v lineárním čase. Práce s výrazy a železničářský algoritmus.
Co to jsou grafy, jak je v programech reprezentovat a hlavně k čemu se dají použít. Prohledávání grafu do šířky i do hloubky. Hledání nejkratších cest: Dijkstrův a Floydův algoritmus. Minimální kostry a Union-Find problem.
Trochu hlubší pohled na prohledávání do hloubky. Jeho (často dost nečekané) aplikace v dalších algoritmech, jako je třeba hledání mostů, topologické třídění, rozklad na komponenty silné souvislosti či kreslení grafu jedním tahem.
K čemu je dobré, když grafem teče voda. Předvedeme si klasický problém toků v sítích a jeho všelijaké, mnohdy dosti překvapivé aplikace. Jak rozestavět n věží na šachovnici a jak ji místo toho pokrýt dominovými kostkami? Další souvislosti, jako třeba násobná souvislost grafů.
Předpoklady: Umět plavat (zejména v matematice)Jak si ukládat data natolik šikovně, abychom je nejen neztratili, ale také našli dříve, než si pro nás přijde Smrť. Klasické struktury jako pole, seznamy, fronta a zásobník, trie, vyhledávací stromy (vyvážené, AVL, a-b, splay), haldy (binární a obecně regulární) a v neposlední řadě hešování.
Důmyslnější varianty vyhledávacích stromů: splay stromy, BB-α stromy, vícerozměrné stromy. Chytřejší haldy: binomiální, Fibonacciho, 2-3. Amortizovaná analýza složitosti. Též několik přátelských randomizovaných datových struktur: skip listy a treapy.
Intervalový strom je datová struktura pracující s intervaly, se kterou se můžeme setkat v mnoha úlohách (zejména soutěžních). Řekneme si, co to intervalový strom je, jaké všechny druhy intervalových stromů existují a jejich použití si ukážeme na úlohách. Na závěr si představíme jednu „magickou“ datovou strukturu jménem Fenwickův strom.
Dynamické programování je programátorská technika využívající velice prostinkého nápadu: Proč něco počítat několikrát, když to mohu spočítat jednou a výsledek si uložit? Na této přednášce si ukážeme, že tento jednoduchý nápad může pomoci efektivně vyřešit i poměrně obtížné úlohy.
Někdy potřebujeme najít podřetězec ve velkém množství textu. Stromeček trochu připomínající ten biologický aneb trie. Proč se ve vstupu vracet neboli Knuthův-Morrisův-Prattův algoritmus. Hledání více řetězců najednou podle Aha a Corasickové. Okénkové hešování Rabina a Karpa.
Často potřebujeme načíst nějaký složitý textový vstup: matematický výraz, webovou stránku v HTML, zdroják programu, .... Ukážeme si, jak texty analyzovat (neboli parsovat), aniž bychom v nich zabloudili: rozdělení na lexikální a syntaktickou vrstvu, železničářský algoritmus na parsování výrazů, popis syntaxe pomocí regulárních výrazů a gramatik. Parsování podle gramatiky: dynamické programování, přístupy LL a LR, packrat parser.
Základní algoritmy pro řešení geometrických úloh – konvexní obal, dva nejbližší body v rovině, výpočet obsahu nekonvexního mnohoúhelníka, lokalizace bodu, scanline algoritmus a jeho použití, Voroného diagramy a souvislost s persistentními datovými strukturami.
Programovací jazyky a nástroje
Jazyk C patří k nejrozšířenějším jazykům, hodí se pro low-level programování i kusy kódu, které mají zejména být rychlé. Představíme si datové typy a běžné programové konstrukce, vysvětlíme si základy práce s ukazateli a také se seznámíme se standardními knihovnami jazyka C.
++
("Object-oriented system. If we change it, users object.")
[OOP]
Objektově orientované programování přináší jiný náhled na návrh řešení problémů.
Vysvětlíme, jak se liší objektové a procedurální programování. Co je to objekt a co třída.
Základní vlastnosti objektů (dědičnost, zabalení, polymorfismus). Co je to metoda,
překrývání metod, virtuální metody (pozdní vazba) a čistě virtuální (abstraktní) metody.
Syntaxe a odlišnosti ve třech nejvíce používaných jazycích – C++
, C#
a Java.
Jak vypadá víceprocesorové či vícejádrové PCčko a co to znamená pro programátora. Procesy, vlákna a úskalí komunikace mezi nimi. Jak se snese n kohoutů na jednom smetišti? Synchronizační primitiva: mutexy, semafory, podmínkové proměnné. Spinlocky, deadlocky a livelocky. Jde to i bez synchronizace: atomické operace, transakční paměť. Které jazyky nám pomáhají a které spíš škodí. Kdy je lepší vlákna použít a kdy ne.
Předpoklady: Trochu představy o hardwaruJednoho dne se Larry Wall rozhodl, že nasype do jednoho velkého kotle spousty programovacích jazyků a unixových utilit, za stálého míchání povaří, posléze přecedí, přikoření a implementuje. Tak vznikl Perl, jazyk původně určený hlavně na zpracování textu, ovšem jak se ukázalo, též šikovný na spoustu dalších věcí. Asociativní pole, libovolně složité datové struktury za pomoci referencí, balíčky a objekty zdarma a hlavně regulární výrazy zde a všude. Zkrátka jazyk, který lze jedině milovat nebo nenávidět, nic mezi tím. Co se Perl 5 přiučil od Perlu 6.
print "Ffff".decode("rot13")
")
[PYTH]
Jak programovat v Pythonu a jak v něm „nepsat Cčko“. Syntaxe, datové typy, funkce, třídy, ... Na co si dát pozor, v čem se Python liší od ostatních jazyků a proč je mezi nimi tak oblíbený.
Proč psát dlouhé a složité programy, když stačí dostatečně přesně popsat situaci a pak se prostě zeptat? Toť princip logického programování, který si ukážeme na Prologu.
Dotazovací jazyk SQL a jeho aplikace, čili jak se domluvit s relační databází a zeptat se rovnou na to, co chci vědět. Definice tabulek a indexů. Dotazy a jejich skládání a vnořování. Pohledy, funkce a triggery. Rozdíly mezi dialekty SQL.
Základy praktické tvorby dynamického webu. Úvod do jazyka PHP a Javascriptu, čtení dat z odeslaných formulářů, přesměrování, databáze, generování obrázků a další.
Mezi programem v Céčku, který jste právě dopsali, a tranzistory uvnitř vašeho procesoru leží obrovské území obývané překladači, linkery, knihovníky, operačními systémy, loadery a jinými bájnými bytostmi. Pojďme zjistit, co jsou zač a co všechno s programem provádějí. Co udělá kompilátor za nás a co musíme naopak udělat my za něj.
C#
("Co se stane, když strčíme Céčko za mříže?")
[CIS]
C#
je moderní objektově orientovaný jazyk, jehož tvůrci se inspirovali
přednostmi a úskalími ostatních programovacích jazyků, zejména Javy. Je jednoduchý a
crossplatformní (tedy snadno v něm vytvoříte i okýnka, která nepoběží jen na okýnkách).
Naučíme se základy a napíšeme i jednoduchý prográmek.
Hardware a operační systémy
Vydáme se do země skřítků, kteří pohánějí počítače. Počítačové architektury od hodinek po superpočítač od Craye, jejich křivolaká historie i současnost. Co je to procesor, jak se programuje a jak se chová. Různé druhy pamětí a jejich cacheování. Jak procesory komunikují s okolím – sběrnice, čipové sady, vstupní a výstupní zařízení. A co když je procesorů několik, nebo třeba pár tisíc? Přednáška bude praktická: pár počítačů při ní rozebereme a možná i nějaký postavíme.
Unixové operační systémy (zejména Linux) dobývají svět. Jak fungují uvnitř a jaké nabízejí výhody? Unixová filosofie a historie. Proč je systém složený ze spousty malých a jednoduchých kousků stabilnější a bezpečnější? Proč ovládání prostřednictím textových příkazů je často efektivnější než klikátka? Jaké to je mít svůj systém pod kontrolou a „vidět mu pod ruce“? V čem spočívá moc textových souborů?
Praktičtěji zaměřená přednáška než UNIX, zabývající se hlavně tím, jak efektivně používat příkazovou řádku. Ukážeme si na spoustě příkladů, jak nám může automatizace všedních činností ulehčit život a jak silné nástroje pro ni UNIXový shell (který navzdory svému názvu existuje i pro Windows) svou jednoduchostí a flexibilitou poskytuje. Budeme spojovat spoustu jednoduchých příkazů do mocných celků a s nimi plnit i na první pohled komplexní úlohy, jako třeba automatické stahování a parsování věcí z webu. Některé činnosti vyžadují lidskou nápaditost a vhled. Ty ostatní bychom měli přenechat strojům.
Jak si program pod Linuxem povídá s operačním systémem, když chce otevřít soubor, přečíst soubor, půjčit trochu paměti a jiná šprťouchlata. Předvedeme si, jaká existují v Linuxu systémová volání. Naučíme se namapovat si soubor rovnou do paměti, posílat a odchytávat signály, uspávat a probouzet proces, plodit děti a další. Pokud zbyde čas, můžeme si napsat démona a klienta a povídat si po síti.
Předpoklady: Schopnost přečíst a napsat jednoduchý program v C.Sítě a bezpečnost
Jak funguje Internet a počítačové sítě vůbec: od elektronů v drátech (fotonů v optických kabelech nebo elektromagnetických vln) přes packety a jejich routing až k jednotlivým síťovým službám. Adresace, internetworking a dynamický routing. Jak NAT zachránil i zničil Internet a proč se těšíme na IPv6.
Volné navázání na NET. Budeme si povídat o tom, co za data nám po síti běhá a jaké se k tomu používají protokoly – DNS, FTP, HTTP nebo třeba i mailové SMTP a IMAP. Zaměříme se více na ty nejpoužívanější (metody GET a POST v HTTP), nakousneme cacheování a nadlábneme se cookies. A pokud zbude čas, využijeme zranitelnosti některých protokolů a provedeme síťový útok.
Předpoklady: Základní povědomí o počítačových sítíchKryptologie čili tajuplná nauka o šifrách, jejich konstrukci a hlavně o jejich luštění. Přísně tajné. Šifrovací systémy jako lego: základními kostičkami nám budou symetrické a asymetrické šifry a jednosměrné funkce, stavět z nich budeme kryptografické protokoly na bezpečný přenos, autentikaci, digitální podpisy a třeba i na házení korunou po telefonu. Předvedeme nerozluštitelnou šifru a dokonce to o ní i dokážeme.
Teoretická informatika
Trochu hlouběji o složitosti. Přesná definice výpočetního modelu a velikosti vstupu. Složitost v nejlepším, nejhorším a průměrném případě; amortizovaná analýza. Jak dokázat, že úlohu nejde řešit rychleji, aneb dolní odhady. Porovnávání problémů pomocí redukcí, problémy NP-úplné a ještě těžší.
Předpoklady: SLOZEvoluční algoritmy se inspirují strukturami chování v přírodě a na jejich základě pak (optimalizačně) hledají řešení těžkých problémů. Na přednášce určitě zazní genetický algoritmus, zmíníme jeho algoritmy a když zbyde čas tak si obecněji popovídáme o algoritmech pohybujících se ve velkých prostorech řešení.
Úlohy, kterými se zabývá strojové učení. Co je to učení s učitelem a bez učitele? Ukážeme si základní postupy, jak počítač můžeme naučit rozpoznávat věci, které sami rozpoznat neumíme. Umí Facebook nebo Google poznat, co máme rádi, jakou máme náladu, nebo jestli jsme těhotní?
V HW se dozvíte, jak fungují „opravdové“ počítače, zde pro změnu na čem počítají teoretici. Všechny počítače jsou si rovny, jen některé jsou si rovnější. Turingův stroj obyčejný, vícepáskový, nedeterministický a univerzální. Random Access Machine (RAM) a Pointer Machine. Až nám začne být smutno, pořídíme si klidně N2 procesorů a spřáhneme je do paralelního počítače (PRAM). Rychlé paralelní slévání a třídění. Pokud zbude čas, ukážeme si buněčné a grafové automaty, nebo třeba dlaždičky v koupelně.
O jazycích přirozených, počítačových a matematických, jejich popisu a rozpoznávání. Začneme těmi nejjednoduššími: regulární jazyky a výrazy, konečné deterministické a nedeterministické automaty. Pak budeme stoupat po příčkách Chomského hierarchie, kam až to půjde. Jak výpočetně silný je třeba takový automat na kafe?
Matematické přednášky
Teorie grafů trochu teoretičtěji. Různé druhy grafů a jejich vlastnosti. Stromy a lesy. Kreslení grafů jedním tahem. Princip sudosti a skóre grafu. Jaké speciální vlastnosti mají rovinné grafy a jak je lze obarvit šesti nebo možná i pěti barvami. Jak poznat, že dva grafy (ne)jsou isomorfní. Mosty, artikulace a ušaté lemma. Párování, střídavé cesty a Hallova věta.
Co a k čemu je teorie čísel. Počítání v kongruenci, Euklidův algoritmus a jeho použití. Konečná tělesa a Malá Fermatova věta. Prvočísla a Eratosthenovo síto. Čínská zbytková věta a její algoritmická verze. Jak si odvodit kritéria dělitelnosti.
Při navrhování algoritmů a počítání jejich složitosti narazíme na celou řádku zajímavých a ne úplně triviálních kombinatorických problémů, a tak se naučíme, jak na ně. Základní triky s faktoriály a kombinačními čísly, sčítání konečných a občas i nekonečných řad, rekurentní rovnice a princip inkluze a exkluze.
Rozšiřující přednášky
Mezi rozšiřujícími přednáškami se dají nalézt různé specifičtější obory a zájmy, jakožto i těžší přednášky navazující na předchozí díly ze základních přednášek. Mezi nabízenými přednáškami si tak můžete vybrat obor svého zájmu a tomu se dál věnovat.
Algoritmy a datové struktury
Jak postavit datovou strukturu, která si pamatuje svou vlastní historii? Jak z libovolné statické datové struktury udělat dynamickou? Lze navrhnout vyhledávací strom se složitostí O(log log n)? Tyto a ještě další triky budou obsaženy v této přednášce.
O problému hledání cest v grafech trochu podrobněji. Obecné relaxační schéma, Bellmanův-Fordův a Dijkstrův algoritmus a jejich zrychlení pomocí různých datových struktur. Potenciálová redukce a heuristiky (třeba A*), zaokrouhlování délek hran. Souvislosti s násobením matic: transitivní uzávěr, Seidelův algoritmus, Kleeneho algoritmus a regulární výrazy.
Pomocí sufixového stromu lze většinu řetězcových problémů vyřešit v lineárním čase. Na přednášce si ukážeme, jak sufixový strom vypadá, jak se pomocí něj řeší problémy, jak souvisí se sufixovým polem a pomalu se budeme přibližovat k jeho konstrukci.
NP-úplný problém je problém, pro který není znám žádný algoritmus řešící optimálně všechny instance v polynomiálním čase. To ale neznamená, že takový problém vůbec vyřešit neumíme. Podíváme se na příklady "efektivních" exponenciálních algoritmů a další způsoby nakládání s NP-úplnými problémy.
V případě stromů se mnohé těžké problémy stávají jednoduchými a mají svá specifická řešení. Ukážeme si použití myšlenky dynamického programování, vyřešíme úlohu nejbližšího společného předchůdce a předvedeme dekompozici stromu a následné postavení datové struktury nad ní.
Přehled základních kompresních algoritmů: triviální algoritmy (RLE), statistické metody (Huffmanovo a aritmetické kódování), slovníková komprese (LZ77, LZ78, LZW), Burrowsova-Wheelerova transformace (BZIP). Pokud zbude čas, tak i něco o ztrátové kompresi obrázků a zvuku (prediktory, wavelets, JPEG, MPEG, fraktály).
O algoritmech značně magických a nečekaných. Jak násobit n-ciferná čísla rychleji než v kvadratickém čase. Kouzlo na slévání setříděných posloupností v konstantním prostoru. Isomorfismus stromů pomocí přihrádkového třídění. Bitové kejklířství. Hledání největší díry.
Programovací jazyky
++
("Je dobré znát, co umí atomová bomba (a její datový typ), abychom ji nechtěli použít.")
[CPP]
Pokročilejší prvky C++
(šablony, přetěžování funkcí a operátorů,
preprocesorové hacky, ...) a možnosti jejich (po|zne)užití. Jak s nimi vytvořit věci
magické (smart pointers, lambda funkce), ale i na první pohled docela obyčejné,
které si bohužel jinak pořídit nejde. Nahlédneme do vnitřností slavné knihovny
Boost. Proč je třeba preprocesorem vygenerovat 512 šablonovaných
typů jen, abychom mohli rozumně předávat pointery na metody? Jaká akrobacie je
nutná pro obyčejnou statickou inicializaci seznamu? A mnohá další překvapení.
Přednáška vás naučí psát v C++
složité věci a přesvědčí, že v něm nechcete
psát ani jednoduché.
++
, staticky alokovaný kyblík
Je to Perl, a přitom to Perl není. Co je to? Aneb jak to dopadne, když se pokusíme navrhnout programovací jazyk budoucnosti a inspirovat se přitom filosofií Perlu. Typový systém, pokud zrovna chcete. Objekty, třídy a metatřídy. Periodická soustava (meta)operátorů. Definování jazyka v sobě samém. A co se to stalo s regulárními výrazy? Jak vypadají implementace P6 a kdy je prozatím lepší programovat na papíře. Praktické cvičení ve stavbě vzdušných zámků a bydlení v nich.
import antigravity
")
[PYTH2]
Povídání o méně zmiňovaných částech Pythonu. New-style classes, dekorátory, metaclasses, generátory, funkcionální styl programování v Pythonu. Jak napsat quicksort jako lambda funkci. Představení zajímavých modulů nejen ze standardní knihovny.
Předpoklady: PYTHProgramovací nástroje a techniky
Jak vyvíjet program delší dobu a nezbláznit se u toho. Různé systémy pro správu verzí od diff/patch přes CVS a SVN až ke Gitu. Jak Git funguje: stromy, commity, větve, tagy. Merge mezi větvemi nebo mezi různými počítači. Kouzelnické triky: hledáme bugy půlením historie, přepisujeme dějiny. Jak se liší správa zdrojáků v projektech o jednom, deseti a tisíci programátorech. Udržujeme patche k cizímu programu aneb quilt a StGit.
make love ... don't know how to make love
")
[MAKE]
Hodil by se otrok, který by překládal jednotlivé soubory.
Základní syntaxe takového otroka, jak napsat jednoduchý Makefile
, který řeší překlad Céčkového programu,
automatické řešení závislostí. Jak to udělat, aby výsledek neměl několik tisíc řádek.
Proč by se hodilo, aby tu bylo něco lepšího. A proč automake, cmake a qmake nepomáhají.
Kdo píše programy, které vždy hned fungují, ať se přihlásí. A kdo ne, ať se přihlásí na
tuto přednášku. Ukážeme si několik nástrojů, jak si pomoci z nejhoršího. Mezi nimi
třeba gdb, řádkový debugger (odvšivovač), strace, nebo valgrind. Kdy je použít a kdy se více hodí
printf
. Proč assert
je tak užitečná věc.
Odložme na chvíli své myše a pojďme si vyzkoušet textový editor, který umí poslouchat na slovo. Pravda, budeme se ta slova muset chvíli učit, ale výsledek bude proklatě efektivní. Základní příkazy, práce s regulárními výrazy, makra, kouzla. Vimovité ovládání jiných programů, třeba webového prohlížeče.
Tvrdí se, že číst kód je mnohdy těžší, než ho psát – dokonce i po sobě, stačí krátká doba.
Je několik obecně uznávaných pravidel, jak kód psát a jak ne, aby byl hezký a dobře čitelný.
Od základních (rozumná pojmenovací konvence, systematické odsazování),
až po to, kdy opravdu použít goto
a jak napsat užitečný komentář nebo dokumentaci.
A kdy se vyplatí se na všechna tato pravidla vybodnout.
Hardware a operační systémy
Dnešní procesory mají několik úrovní vyrovnávacích pamětí (cache), což způsobuje, že ačkoliv si jsou všechny části paměti rovny, některé si jsou rovnější. Jak taková cache funguje? Jak se procesor rozhodne, co si v ní zapamatuje a co vyhodí? Jak toho můžeme využívat při programování, aby naše programy běžely rychleji? Předvedeme kousek teorie i několik praktických ukázek s poněkud překvapivým chováním.
Předpoklady: Kešu oříškyCo ten kernel vlastně je, čím se liší programování v kernelu od normálního kódu, jak sobě vlastní kernel postaviti a jak v něm něco opraviti. Kde najít nejnovější zdrojáky a kde najít pomoc, až se něco pokazí.
Sítě a bezpečnost
Co se stane s e-mailem, když jej odešlete? Kudy chodí a kudy jej čerti nesou? Jaké máte záruky, že přijde; proč občas přijde pozdě nebo vůbec. Problém formátů a kódování, chyby webových i jiných klientů. Protokoly SMTP, POP, IMAP a co se stane, když do nich přimícháme SSL/TLS. E-mailová bezpečnost, SPAM, viry, phishing, BFU a kde koupit levnou viagru. Nakonec se podíváme na ne zrovna triviální grafový problém, který je v emailech skrytý.
Pokročilejší a občas nečekané aplikace základních kryptografických primitiv. Jak přesvědčit server, že známe heslo, aniž bychom mu ho posílali? Jak zajistit, aby útočník nemohl dešifrovat komunikaci, ani když dodatečně získá soukromý klíč? Jak funguje BitCoin (decentralizovaná digitální měna) či Tor (protokol znemožňující komukoli po cestě vědět, kdo s kým komunikuje)? Malý bonus: nečekané útoky na kryptografické systémy. Jak zjistit heslo na základě doby odpovědi serveru? Jak otevřít libovolné auto krabičkou za 30 dolarů? A kdy se při hackování hodí tekutý dusík?
Předpoklady: Základní povědomí o šifrování (CRYPT) a víra v existenci náhodných číselGrafika a typografie
Kreslení a zpracování obrazu na počítači. Co vše obnáší vykreslení obyčejné čáry, aby to bylo rychlé a pěkně vypadalo. A co teprve, když ta čáry zatáčí! Vyplňování n-úhelníků a křivkou ohraničených oblastí, flood fill. Také maticové filtry pro zpracování fotek (zaostření, rozmazání), anti-aliasing a dithering. Pokud se stihne, tak navíc základy 3D vykreslování.
Lehké nakousnutí jazyka, ve kterém můžete opravdu kreslit planimetrické obrázky, ale i třeba písma nebo piktogramy do zadání a řešení KSP. Jak vypadají CM fonty (ty, které používá TeX) a jak se autorovi povedlo, že se z jediného „obrázku“ dá vygenerovat tlusté, tenké, rovné, skloněné, šišaté písmenko.
Jak na počítači text nejen napsat, ale také vysázet tak, aby pěkně vypadal a aby (což je důležitější) se i příjemně četl. Jak se sází pohádka, jak báseň a jak vzorové řešení KSP plné komplikovaných vzorců. Jak jde dohromady staleté umění typografické a moderní technika. Přineste knihy i letáky, zkritizujeme sazeče, co se do nich vejde.
Donald E. Knuth napsal TeX před desítkami let proto, že mu nikdo nebyl schopen vysázet matematický text podle jeho požadavků. Od té doby se hojně používá pro sazbu nejrůznějších publikací. V této spíše praktické přednášce si ukážeme použití TeXu od hladké sazby knihy až po zběsilosti hraničící s programováním. Pozornost věnujeme i zdrojům informací a rozdílům mezi různými dialekty TeXu.
Aplikace informatiky
Zejména motivační přednáška o počítačové lingvistice a počítačovém zpracování přirozeného jazyka. Podíváme se na vlastnosti přirozených jazyků a zaměříme se na to, jak moc komplikují jejich počítačové zpracování. Pojmenujeme odlišnosti mezi kontrolou pravopisu, automatickým překladem a konverzací s uživatelem a ukážeme si, co se zatím umí používat.
Obvykle tvoříme programy (nebo třeba webové stránky) s cílem, aby je používali i další lidé. K tomu je ovšem vhodné, aby se i ostatním dobře používali. Jak něco takového měřit a testovat? Kognitivní průchod, heuristická evaluace i testování s lidmi. Jak pracovat s výsledky testů a proč nevadí, že Vim by v některých testech rozhodně neuspěl.
Jak se liší PDA, MDA, Smartphone a obyčejný mobilní telefon. Jak vlastně takový mobilní telefon funguje a jak vypadá struktura základnových stanic dovolující, aby fungovat mohl. Spíše hardwarový přehled toho, co vlastně v dnešním telefonu je a co to umí – dotykové technologie, bezdrátové sítě, vlastnosti různých baterií, metody šetření elektřinou. Diskuze o třech (čtyřech) hlavních platformách dneška a ukázka konkrétního využití, aneb s telefonem se dá mnohem více, než jen telefonovat.
Mobilný telefón dnes bežne používame na zadávanie platobných príkazov či okamžité zdieľanie fotiek cez internet. Je to ale bezpečné? Pozrieme sa aké súčasti mobilné telefóny obsahujú, ako sú jednotlivé HW/SW komponenty zabezpečené a čo nám môže spraviť útočník, výrobca telefónu alebo mobilný operátor. Ukážeme si koncept bezpečnejšieho mobilného telefónu, konkrétne projekt Neo900.
Matematické přednášky
Jakýkoliv problém, který lze popsat soustavou lineárních nerovnic lze vyřešit v polynomiálním čase. A to metodou lineárního programování. Povíme si základy k tomu, jak lineární program vypadá, jak se vyřeší a jak různé úlohy dají popsat pomocí lineárního programu. Přednáška se může buď více zaměřit na samotnou teorii lineárního programování, a nebo na jeho aplikaci v různých algoritmických úlohách.
Lineární algebra původně vznikla jako elegantní prostředek k popisování geometrie lineárních útvarů (bodů, přímek, rovin, ...) v libovolněrozměrném prostoru, ale ukázalo se, že její kouzlo dosahuje daleko dál. Vektorové prostory, lineární (ne)závislost, báze, lineární zobrazení a matice, determinanty, tenzory. Konečné projektivní roviny.
Jak se nám matematika změní, když připustíme, že se záporná čísla také dají odmocňovat? Čísla imaginární a komplexní a jejich různé podoby. Součtové vzorce pro sin a cos dostaneme téměř zdarma. K čemu se hodí v matematice a k čemu ve fyzice. Proč se zastavit u dvou složek aneb kvaterniony, oktoniony a Cliffordovy algebry. Remember, life is complex.
Limita, derivace, derivace-1, integrál. Z pohledu formální matematiky velmi podobné si jsou. My si ukážeme, jak jednoduše lze tyto pojmy pochopit a že vyzrát na ně není vůbec těžké.
Jemný úvod do Mongeova promítání a axonometrie. Jak nakreslit krychli aby vypadala „jako živá“, jak narýsovat na list papíru dvě navzájem kolmé roviny a poznat, kde se protínají a spousta dalších zajímavých konstrukcí.
Půlnoční přednášky
Aneb přednášky přednášené (nejen) o půlnoci na různá zajímavá témata nejen o informatice. Pokud nějaká z nich nebude oficiálně vypsaná, je možné si konkrétního organizátora ve volné chvíli chytit a přesvědčit ho k přednášení.
Převážně nevážné a mírně nepřed-vídatelné po-vídání o jazyku i jazyce. Základní jazykové rodiny a jejich podobnosti i odlišnosti. Co má společného čínština s angličtinou a co nikoliv. Proč jeden jazyk potřebuje 15 pádů, zatímco jiný se bez nich obejde úplně. Jak se jazyky vyvíjejí a jak se navzájem ovlivňují. Kde se berou jazyková pravidla. Kde se vzalo písmo a proč se mluvený a psaný jazyk tolik liší. Jak se na jazyk dívá matematik a jak se na matematiku dívají lingvisté.
Nezávazné povídání o Matfyzu a základním matfyzáckém folkloru. Určitě si přečteme matfyzáky sepsaný Úvod do matfyzáka a zazpíváme pár matfyzáckých písní. Zbytek už bude záležet na tom, co budete chtít slyšet.
Co mám dělat, abych uspěl v soutěžích? Jak se připravovat? Na co dát důraz? Co si připravit předem a čeho si všímat při soutěži? Jak odhadnout náročnost a které úlohy si pro řešení vybrat jako první? Je úspěch otázka talentu nebo tvrdého tréninku?
Volné povídání o tom, co se všechno skrývá za organizováním různých seminářů a podobných akcí, primárně pak KSPčka. Jaká práce, jaké radosti a jaké starosti s sebou organizování nese, co se přitom člověk může naučit a také pár cenných rad do života. Jak se z toho nezbláznit a pár bláznivých příhod k tomu.
Jak ze neztratit v terénu a jak se neztratit na moři. Vývoj umění navigace. K čemu je důležité slunce a hvězdy, ale proč mořeplavcům nestačí, alespoň dokud neobjevíme hodinky. Použití mapy, busoly a GPSky. Orientace bez pomůcek a použití Ariadniny nitě. Bleskový úvod do sférické astronomie a časomíry čili jak (ne)postavit sluneční a třeba i měsíční hodiny. Jak reprezentovat mapu v počítači a jak raději ne. Jak zapisovat polohu místa na Zemi (přestože Země má tvar podivně nakousnuté hrušky) a kolika způsoby to jde. Různé druhy map a jejich (z)kreslení. Jak se neztratit v kartografii. Praktické cvičení v terénu.
Pobavíme se o základech první pomoci. Jak správně vyhodnotit situaci a kdy je potřeba volat pomoc? Jak se postarat o člověka v bezvědomí, jak kontrolovat životní funkce a jak člověka stabilizovat do příjezdu pomoci? Ukážeme si, jak málo stačí k záchraně života a naučíme se nebát se první pomoci. A také, že naše bezpečí je v každé situaci na prvním místě.
České předmětové olympiády z pohledu soutěžícího i nezávislého pozorovatele. Jak se dostat do celostátního kola, jak (možná) dojít až do mezinárodní olympiády a která cesta vede zaručeně do pekel. Příspěvek ze strany korespondenčních seminářů, aneb zapomeňte školní znalosti, ty vám nepomůžou. Nečekejte univerzální rady, neb žádné takové neexistují, spíše vyprávění o cestě obyčejného smrtelníka olympiádním molochem.
Nahlédneme do tajů starších i novějších aut. Podle zájmu se můžeme pobavit o tom, jaký je rozdíl mezi benzínovým a naftovým motorem, či proč se auta staví zrovna tak, jak se staví. Na praktické ukázce probereme (a trochu rozebereme) auto a co nejvíce si ukážeme – z pohledu běžné údržby i jednoduchých oprav. Určeno pro každého, koho čeká autoškola, nebo ho jen baví mechanika.
Technické objevy v různých sci-fi (Star Trek/Gate/Wars i dalších) a pohled na ně z perspektivy dnešních fyzikálních znalostí. Proč se v Hollywoodských filmech ozývá ve vesmíru zvuk laserů, i když je tam vakuum, a je možné cestovat rychleji než světlo? Také možná zabrousíme do některých filozofických otázek – primární směrnice o nevměšování ve Star Treku a jiné.
Evoluční teorie je asi jedním z největších převratů v lidském náhledu na svět. Jak se na takovou věc vůbec přišlo, proč to tak dlouho trvalo a proč si myslíme, že je to pravda? Jak si to vše alespoň trochu představit? Mnoho nečekaných překvapení, informatické a fyzikální souvislosti. Proč jsou stromy vysoké, jak souvisí pohlavní rozmnožování s počítačovou bezpečností, co má evoluce společného s Windows a co s halting problémem?
Předpoklady: Základní přednáška nevyžadující předchozí biologické znalosti.mkfifo p;nc -lp80<psed -re "s/GET /tac</;s/ .*/;echo;echo& 200 OK/;q"sh|tac>p
")
[SS]
Co vše se dá napsat za pomoci unixového shellu a spřízněných utilit. Webové aplikace, šablonovací systém, síťová komunikace, OOP, ... Proč to obvykle není dobrý nápad, ale občas taky ano.
Společné filosofování nad programovacími jazyky a zejména nad tím, proč jsou všechny na draka, jen některé víc než jiné. Proč lze mít všechno na světě, jenže ne najednou. Proč je někdy lepší nechat programátora, aby si sedl na své vlastní vidle. Proč jsou některé vlastnosti jazyků na první pohled geniální, zatímco jiné (až) na ten druhý. Proč je důležitá hustota kódu a Huffmanův princip. Proč je někdy důležitější evoluce než revoluce.
Kdo, proč a jak se nás o ně snaží připravit? Co o vás ví Google, Facebook, Apple či NSA a jakou nad vámi mají moc? Kdo může z vašeho telefonu vzdáleně číst a mazat data? Čím hrozí „kyberzákony“ a mezinárodní dohody? DMCA, SOPA, ACTA, TT(I)P a další. Bude Hollywood rozhodovat o tom, co (ne)smíte vidět na internetu a Microsoft o tom, jaký software (ne)smíte používat? Proč je často protizákonné upozornit uživatele na bezpečnostní chyby? A kdy váš to vše může stát život?
Vše o hudební teorii, co jste ve škole nechápali a báli jste se zeptat. Ve svižném tempu si zadefinujeme tóny, intervaly a stupnice a ukážeme si, jak to celé souvisí s matematikou. Po troše nadávání na klasickou hudební notaci se přesuneme k akordům a základům harmonizace v evropské hudbě. Zahrajeme si pár čtyřakordových písniček a třeba složíme i nějakou vlastní. Vhodné jak pro hráče na hudební nástroje, tak ostatní, pro které byla hudba dosud velkou záhadou.
Co je to spravedlnost? Co je správné? Je na světě něco spravedlivé? Existuje objektivní spravedlnost? Kdo za ni ručí a kde se na světě vzala? Nebo je to jen prospěch silnějšího a lidský výmysl? Pokusíme se vést rozhovor, jehož účelem bude najít pravdu. Můžeme použít třeba sokratovskou metodu.